
1

 v. 2020.2 by HP Huang (hp.huang@asu.edu)

 Supplementary material for MAE384, 502

50

Basic Examples for Matlab

2

Part 1. Write your first Matlab program

Ex. 1 Write your first Matlab program

a = 3;

b = 5;

c = a+b

Output:

8

Remarks: (1) The semicolon at the end of a statement acts to suppress output (to keep

the program running in a "quiet mode"). (2) The third statement, c = a+b, is not

followed by a semicolon so the content of the variable c is "dumped" as the output.

Ex. 2 The meaning of "a = b"

In Matlab and in any programming language, the statement "a = b" does not mean

"a equals b". Instead, it prompts the action of replacing the content of a by the

content of b.

a = 3;

b = a;

b

Output:

3

Remark: Think of the two "variables" a and b as two buckets labeled "a" and "b". The

first statement puts the number 3 into bucket a. The second statement puts the content

of bucket a into bucket b, such that we now have "3" in bucket b. (The content of

bucket a remains unchanged after this action.) The third statement dumps the content of

bucket b to screen so the final output is "3".

3

Ex. 3 Basic math operations

a = 3;

b = 9;

c = 2*a+b^2-a*b+b/a-10

Output:

53

Remark: The right-hand side of the third statement includes all 4 of the basic arithmetic

operators, + (addition), - (subtraction), * (multiplication), and / (division), in their usual

meaning. It also includes the symbol, ^, which means "to the power of", so "b^2" means

(the content of b) to the power of 2, i.e., 92 = 81. The right-hand side of that statement is

first evaluated: r.h.s. = 2 x 3 + 92 - 3 x 9 + 9/3 - 10 = 53. The content of r.h.s., now 53, is

then assigned to the variable c in the left-hand side. Since this statement is not followed

by a semicolon, the content of c is dumped as the final output.

Ex. 4 The meaning of "a = b", continued

a = 3;

a = a+1;

a

Output:

4

Remark: The value of the variable a is 3 after the first statement. In the second

statement, the right-hand side is first evaluated to be 3+1 = 4. This value is then used to

replace the old content of a, so a becomes 4 instead of 3.

Ex. 5 Formatted output

fprintf('Hello')

Output:

Hello

4

Ex. 6 Formatted output

a = 3;

b = a*a;

c = a*a*a;

d = sqrt(a);

fprintf('%4u square equals %4u \r', a, b)

fprintf('%4u cube equals %4u \r', a, c)

fprintf('The square root of %2u is %6.4f \r', a, d)

Output:

 3 square equals 9

 3 cube equals 27

 The square root of 3 is 1.7321

Remarks: The command "fprintf" is for formatted output, using the format specified in

the first string '...' in the parentheses. The "%4u" (4-digit integer) and "%6.4f" (real

number that preserves 4 digits to the right of the floating point) are the format for the

variable(s) for output. The "sqrt" in the 4th statement is the intrinsic function for square

root. In the format for fprintf, the “\r” command is for “carriage return” (jump to the

next line). Without it, the 3 lines of output will collapse into just 1 long line. An

alternative command that serves a similar function is “\n” (for “new line”).

Ex. 7 Arrays

a = [3 6 7];

b = [1 9 4];

c = a + b

Output:

4 15 11

Remarks: (1) Both a and b are given as a three-element array. In the third line, the

operation of "a+b" results in element-by-element addition

5

Ex. 8 Extracting an individual element of an array

a = [3 6 7];

b = [1 9 4 5];

c = a(2) + b(4)

Output:

c = 11

Remark: If b is a one-dimensional array, b(n) is the n-th element of that array. Since

a(2) is 6 and b(4) is 5, the 3rd statement leads to c = 6+5 = 11.

Ex. 9 Comment

%

% This program demonstrates how to "comment out"

% a segment of code

%

A = 3;

B = A*A;

%

% B = 2*B <<<< This statement is not executed

%

C = A+B

Output:

c = 12

Ex. 10 Continuation to next line

summation1 = 1 + 3 + 5 + 7 ...

 + 9 + 11

Note: The three periods (...) allow continuation to the next line of commands. The two

lines in the above example are essentially one line of "summation1 = 1+3+5+7+9+11".

6

Ex. 11 "Clear" a variable

c1 = 3;

c2 = c1+5;

clear c1

c1

Output:

??? Undefined function or variable 'c1'.

Remarks: We see an error message because the variable "c1" no longer exists. It is

purged from the computer memory by the "clear" command. Note that the command

does not just act to delete the content of a variable, but it kills the variable. The 3rd

statement can be useful if c1 is a big array that occupies a lot of memory but is no longer

needed for the rest of the program. The 3rd statement only kills c1, while c2 (= 8) still

exists. A "clear" command not followed by any variable will kill all variables.

Ex. 11 Intrinsic math functions and constants

x = pi;

y = sin(pi/2)

z = exp(-sin(pi/2))

Output:

y = 1

z = 0.3679

Remarks: "pi" (= 3.14159...) is a reserved intrinsic constant. A function within a function

is allowed. The innermost function will be evaluated first, so the 3rd statement leads to z

= exp(-1) = 0.3679. The lower-case “i” is reserved as the intrinsic (and imaginary)

constant of the square root of -1, unless it is otherwise pre-defined by the user.

Ex. 12 Naming a variable

Matlab variables are case sensitive. For example, "ASU" and "asu" are two different

variables. An underscore (_) or a number (0-9) can be part of the name of a variable.

For example, "MAE_384" is a legitimate variable name. (iii) Some names are reserved

for special constants.

7

Ex. 13 Making a quick plot

x = [0:0.1:20];

y = sin(x);

plot(x,y)

The outcome will be the following plot:

Remarks: This only serves as a very quick example of what Matlab can do in making

plots. will have more detailed discussions on the use of arrays and Matlab's graphic tools

in later lectures. The first line is equivalent to x = [0 0.1 0.2 0.3 ... 19.8 19.9 20]. It

assigns the content of x which is an array of 201 elements. The "0:0.1:20" means the

201 numbers are evenly spaced. They start from 0 and end at 20 with an increment of

0.1. The second line gives the content of the new array, y, as

 y = [sin(x(1)) sin(x(2)) sin(x(3)) ... sin(x(200)) sin(x(201))] ,

or

 y = [sin(0) sin(0.1) sin(0.2) ... sin(19.9) sin(20)] .

The 3rd line makes a plot of y vs. x.

8

Part 2. Basic looping

1. The for loop

Ex. 14 Loop: Using for command

b = 3;

for k = 1:5

 b

end

Output:

3

3

3

3

3

Remark: The blue-colored segment in lines 2-4 forms a "for-loop". The statement

sandwiched between "for k = 1:5" and "end" is repeated 5 times, with the "k" index

going from 1 to 5 step 1.

Ex. 15 For loop: Utility of the dummy index

b = 3;

for k = 1:5

 b^k

end

Output:

3

9

27

81

243

Remark: The outputs are 3^1, 3^2, 3^3, 3^4, and 3^5. the value of "k" keeps changing as

we go through the loop

9

Ex. 16 For loop: More on the dummy index

sum1 = 0;

for k = 1:9

 sum1 = sum1+k;

end

sum1

Output:

45

Remark: this program performs the summation of 1+2+3+4+5+6+7+8+9 (= 45).

Ex. 17 For loop: More on the dummy index

sum1 = 0;

for k = 1:2:9

 sum1 = sum1+k;

end

sum1

Output:

25

Remark: this program performs the summation of 1+3+5+7+9 (= 25). The command

"for k = 1:2:9" means we go through the loop only 5 times. First time with k = 1, second

time with k = 1+2 (=3), third time with k = 1+2+2 (=5), and so on. The looping stops

once k reaches 9.

10

Ex. 18 Treatment of array within a loop

b = [3 8 9 4 7 5];

sum1 = 0;

for k = 1:4

 sum1 = sum1+b(k);

end

sum1

Output:

24

Remark: This program performs the summation of sum1 = b(1)+b(2)+b(3)+b(4) =

3+8+9+4 = 24

Ex. 19 Treatment of array within a loop

b = [3 8 9 4 7 5];

sum1 = 0;

for k = 1:2:5

 sum1 = sum1+b(k);

end

sum1

Output:

19

Remark: This program performs the summation of sum1 = b(1)+b(3)+b(5) = 3+9+7 = 19

11

Ex. 20 Double loop

sum1 = 0;

for n = 1:2

 for m = 1:3

 sum1 = sum1+n*m;

 end

end

sum1

Output:

18

Remark: this program performs the summation of

Sum1 = 1*1+1*2+1*3 +2*1+2*2+2*3 = 18

Ex. 21 Double loop

for n = 1:2

 for m = 1:3

 fprintf('n = %3u m = %3u \r', n, m)

 end

end

Output:

 n = 1 m = 1

 n = 1 m = 2

 n = 1 m = 3

 n = 2 m = 1

 n = 2 m = 2

 n = 2 m = 3

12

Ex. 22 More complicated use of loop and index

b = [2 5 7 4 9 8 3];

c = [2 3 5 7];

sum1 = 0;

for k = 1:4

 sum1 = sum1+b(c(k));

end

sum1

Output:

24

Remark: This program performs the summation of

sum1 = b(c(1))+b(c(2))+b(c(3))+b(c(4))

 = b(2)+b(3)+b(5)+b(7)

 = 5+7+9+3

 = 24

13

Part 3. Basic branching

Ex. 23 The if command

num1 = 7;

if (num1 > 5)

 fprintf('%4u is greater than 5 \r', num1)

else

 fprintf('%4u is less than or equal to 5 \r', num1)

end

Output:

 7 is greater than 5

Same program, but change first line to "num1 = 3;"

Output:

 3 is less than or equal to 5

Remark: In this program, if (num1 > 5) (num1 is greater than 5) is true, the statement

"fprintf('%4u is greater than 5 \r', num1)" is executed. Otherwise, the statement

"fprintf('%4u is less than or equal to 5 \r', num1)" is executed.

Ex 24 if - elseif - else (This example is self-explanatory. Try to change the given value

of num1 and observe the outcome.)

num1 = 4;

if (num1 >= 5)

 fprintf('%4i is greater than or equal to 5 \r', num1)

elseif (num1 > 1)

 fprintf('%4i is less than 5 but greater than 1 \r',

num1)

elseif (num1 == 1)

 fprintf('%4i equals 1 \r', num1)

elseif (num1 > -3)

 fprintf('%4i is less than 1 but greater than -3 \r',

num1)

else

 fprintf('%4i is less than or equal to -3 \r', num1)

end

14

Ex 25 An application - determine whether a given year is a leap year (try to change the

given value of nyear and observe the outcome)

nyear = 1975;

if (mod(nyear, 400) == 0)

 fprintf('%6u is a leap year', nyear)

elseif (mod(nyear,4) == 0) & (mod(nyear,100) ~= 0)

 fprintf('%6u is a leap year', nyear)

else

 fprintf('%6u is not a leap year', nyear)

end

Output:

 1975 is not a leap year

Remarks:

(1) In the elseif command (4th line), "&" means "AND". Both statements

"(mod(nyaer,4) == 0)" and "(mod(nyear,100) ~= 0)" have to be true for Matlab to

execute the command, "fprintf('%6u is a leap year', nyear)". Also commonly used in an

if statement is "|" (a vertical line), which means "OR".

(2) The symbols "~=" in line 4 means "NOT EQUAL TO". There are 6 commonly used

expressions to compare two numbers in an if command:

 A > B A is greater than B

 A < B A is less than B

 A >= B A is greater than or equal to B

 A <= B A is less than or equal to B

 A == B A equals B

 A ~= B A does not equal B

(3) The "mod(A,B)" function returns the remainder of A divided by B. For example,

mod(7,2) = 1, mod(10,4) = 2, and mod(25,5) = 0. If A is divisible by B, mod(A,B) = 0.

This is a very useful function in many applications related to numerical methods.

15

Ex 26 Combine looping and branching

sum1 = 0;

sum2 = 0;

N = 9

for k = 1:N

 sum1 = sum1+k;

 if (mod(k,3) == 0)

 sum2 = sum2+k;

 end

end

sum1

sum2

Output:

sum1 = 45

sum2 = 18

Remark: Sum1 = 1+2+3+4+5+6+7+8+9, while sum2 = 3+6+9.

Ex 27 The while loop

x = 3;

while (x < 100)

 x = x*3;

end

x

Output:

x = 243

Remark: One can think of a while loop as a combination of a for loop and an if

statement. Here, the looping will keep going indefinitely as long as the condition,

(x < 100), is satisfied. Therefore, the value of x progresses from 3, 9, 27, 81, to 243

when the loop is terminated.

16

Part 4. Array and Matrix

1. Assign the content of an array/matrix; Basic operations

Ex. 28 Assign the content of a (one-dimensional) array; Addition of two arrays

a = [2 12 25];

b = [3 7 4];

c = a+b

Output:

c = 5 19 29

Ex. 29 Assign the content of a matrix; Addition of two matrices

a = [3 4; 1 6];

b = [5 2; 11 7];

c = a+b

Output:

c = 8 6

 12 13

This program performs the following acts:

 𝑎 = [
3 4
1 6

]

 𝑏 = [5 2
11 7

]

 𝑐 = 𝑎 + 𝑏 = [
8 6
12 13

]

17

Ex. 30 Multiplication involving a scalar and an array (or a matrix)

a = [3 5; 1 4];

b = 2*a

Output:

b = 6 10

 2 8

Ex. 31 Element-by-element multiplication involving two 1-D arrays or two matrices of

the same dimension

a = [2 3 5];

b = [2 4 9];

c = a.*b

Output:

c = 4 12 45

Remark: The period preceding the mathematical operation, "*", indicates that the

operation will be performed element-by-element. In this case, the content of c is

c = [a(1)*b(1) a(2)*b(2) a(3)*b(3)]

Also, c is automatically assigned as a 1-D array with 3 elements

Ex. 32 Element-by-element multiplication of two matrices

a = [2 3; 1 4];

b = [5 1; 7 2];

c = a.*b

Output:

c = 10 3

 7 8

18

Ex. 33 Direct (not element-by-element) multiplication of two matrices

a = [2 3; 1 4];

b = [5 1; 7 2];

c = a*b

Output:

c = 31 8

 33 9

Remark: Observe how the outcome of this example differs from Ex. 32.

Ex. 34 Elementary functions with a vectorial variable

a = [2 3 5];

b = sin(a)

Output:

b = 0.9092 0.1411 -0.9589

Remark: The content of b is [sin(2) sin(3) sin(5)].

Ex. 35 Another example of elementary functions with a vectorial variable

a = [2 3 5];

b = 2*a.^2+3*a+4

Output:

b = 18 31 69

Remark: The content of b is

b = [2*(a(1))^2+3*a(1)+4 2*(a(2))^2+3*a(2)+4 2*(a(3))^2+3*a(3)+4].

19

Ex. 36 An efficient way to assign the content of an array

a = [0:0.5:4];

a

Output:

a = 0 0.5 1 1.5 2 2.5 3 3.5 4

Ex 37. Extracting the individual element(s) of a matrix

A = [3 5; 2 4];

c = A(2,2)+A(1,2)

Output:

c = 9

Remark: With the given A matrix, we have A(1,1) = 3, A(1,2) = 5, A(2,1) = 2, and A(2,2)

= 4.

Ex. 38 Another example for the usage of index for a matrix

A = [3 5; 2 4];

norm1 = 0;

for m = 1:2

for n = 1:2

 norm1 = norm1+A(m,n)^2;

end

end

norm1 = sqrt(norm1)

Output:

norm1 = 7.348

Remark: This program calculates the Euclidean norm of the A matrix.

20

Ex. 39 Solving a system of linear equation by inversion

A = [4 1 2; 0 3 1; 0 1 2];

b = [17 ; 19 ; 13];

x = inv(A)*b

Output:

x = 1

 5

 4

Remark: This program solves [A] x = b. The solution is obtained by x = [A]-1 b.

Ex. 40 An alternative to Ex. 39

A = [4 1 2; 0 3 1; 0 1 2];

b = [17 ; 19 ; 13];

x = A\b

The output is the same as Ex. 39. The "\" in “A\b” is called "back divide". Back divide

actually takes less steps (compared to performing matrix inversion) in solving the x

vector.

21

Part 5. Basic graphic applications

Ex. 41 A quick example of plot command: Draw a curve

a = [0:0.5:5];

b = 2*a.^2 + 3*a -5;

plot(a,b)

Remarks:

(1) In "plot(a,b)", the array "a" should contain the data of the coordinate or "grid point)

on the x-axis and "b" should be the corresponding values on the y-axis.

(2) After a plot is made, it can be further modified by using the interactive tool for

graphics. For example, the labels of the x and y axes can be manually added to the plot.

(3) The plot can be saved in various formats (jpg, tif, eps, etc.).

22

Ex. 42 Refine the plot: Line pattern, color, and thickness

a = [0:0.5:5];

b = 2*a.^2 + 3*a -5;

plot(a,b,'-or','MarkerFaceColor','g','LineWidth',2)

xlabel('X'); ylabel('Y');

legend('Test','Location','NorthWest')

Remarks: The '-or' in the plot command set the line pattern. In this case, it's solid line

with circular symbol. The circular symbol is filled with green color ('g' for

'MarkerFaceColor'). The legend of the plot is set to locate at the upper-left corner

('Location" set to 'NorthWest') inside the frame.

23

Ex. 43 Draw multiple curves

a = [0:0.5:5];

b = 2*a.^2 + 3*a -5;

c = 1.2*a.^2+4*a-3;

hold on

plot(a,b,'-or','MarkerFaceColor','g','LineWidth',2)

plot(a,c,'--ok','MarkerFaceColor','c','LineWidth',2)

xlabel('X'); ylabel('Y')

legend('Curve 1','Curve 2','Location','NorthWest')

Remark: Without the "hold on" command, the second plot will override the first one and

acts to erase the curve produced by the latter. After executing this program, the top and

right border lines are erased in the final plot. If desired, adding a “box on” command at

the end of the code will restore those lines.

24

Ex. 44 Draw symbols

a = [0:0.5:5];

b = 2*a.^2 + 3*a -5;

c = 1.2*a.^2+4*a-3;

hold on

plot(a,b,'or','MarkerFaceColor','g','LineWidth',2)

plot(a,c,'ok','MarkerFaceColor','c','LineWidth',2)

xlabel('X'); ylabel('Y');

legend('Curve 1','Curve 2','Location','NorthWest')

25

Ex. 45 Plot with multiple panels

a = [0:0.5:5];

b = 2*a.^2 + 3*a -5;

c = 1.2*a.^2+4*a-3;

subplot(1,2,1)

plot(a,b,'-or','MarkerFaceColor','g','LineWidth',2)

xlabel('X'); ylabel('Y');

legend('Curve ','Location','NorthWest')

subplot(1,2,2)

plot(a,c,'--ok','MarkerFaceColor','c','LineWidth',2)

xlabel('X'); ylabel('Y');

legend('Curve 2','Location','NorthWest')

26

Part 6 External (user-defined) function

Ex 46 How to construct and use an external function

First, create the Matlab program for an external function as a separate file. The filename

has to be identical to the name of the user-defined function

 myfunc1.m

This program defines a function, f(x) ≡ 2 x2 + 3 x + 7. The "outcome" in the program is

a dummy variable that is used to indicate the relation between the input parameter ("x")

and the outcome after the evaluation of the function. After an external function is

defined, it can be used in a main program that calls it. For example:

 mainprog1.m

Output (by running mainprog1):

 x = 0.10 f(x) = 7.3200

 x = 0.20 f(x) = 7.6800

 x = 0.30 f(x) = 8.0800

 x = 0.40 f(x) = 8.5200

 x = 0.50 f(x) = 9.0000

Note: The file for the external function should be stored in the same directory as the

main program. Matlab will automatically find and link all required files for the external

functions.

function outcome = myfunc1(x)

outcome = 2*x^2 + 3*x + 7;

for n = 1:5

 x = n*0.1;

 z = myfunc1(x);

 fprintf('x = %4.2f f(x) = %8.4f \r',x,z)

end

27

Ex 47 A function with multiple input parameters

 myfunc2.m

This program defines a function, f(x) ≡ a x2 + b x + c.

 mainprog2.m

Output (by running mainprog2):

 x = 0.10 f(x) = 7.3200

 x = 0.20 f(x) = 7.6800

 x = 0.30 f(x) = 8.0800

 x = 0.40 f(x) = 8.5200

 x = 0.50 f(x) = 9.0000

function outcome = myfunc2(x,a,b,c)

outcome = a*x^2 + b*x + c;

for n = 1:5

 x = n*0.1;

 z = myfunc2(x,2,3,7);

 fprintf('x = %4.2f f(x) = %8.4f \r',x,z)
end

28

Part 7 Use external files and prompt for input and output

Ex 48 Open a file and write the output to the file

fID1 = fopen('myoutput1.txt','w');

for n = 1:4

 b1 = n ; b2 = n^2 ; b3 = n^3;

 fprintf(fID1,'%7u %7u %7u \r',b1,b2,b3);

end

fclose(fID1)

This program will produce no output on the screen but will create a file called

"myoutput.txt" (under the same directory where the Matlab program itself is stored). The

content of the file is

 1 1 1

 2 4 8

 3 9 27

 4 16 64

Remarks:

(1) The first line of code opens a file, 'myoutput1.txt', with the permission type of "w"

which means "write only". Upon executing the command, Matlab will pick a file ID

(which is a number) and put it in the variable, fID1. A user does not need to know what

this number is but will need to use it as the identifier if an output is to be written to that

file. The command, “fclose”, acts to close the file.

(2) The command, fprintf(fID1,'%7u %7u %7u \r',b1,b2,b3), will direct the output to the

file with file ID given by fID1. If a file ID is not given, the shortened command

fprintf('%7u %7u %7u \r',b1,b2,b3) will dump the output on screen which is the default

destination of output.

29

Ex 49 Read data from an existing file

fID1 = fopen('myoutput1.txt','r');

for n = 1:4

 b = fscanf(fID1,'%7u %7u %7u \r',3);

 btotal = b(1)+b(2)+b(3);

 fprintf('%7u + %7u + %7u = %7u \r',b(1),b(2),b(3),...

btotal)

end

fclose(fID)

Output:

 1 + 1 + 1 = 3

 2 + 4 + 8 = 14

 3 + 9 + 27 = 39

 4 + 16 + 64 = 84

Remark: We assume that the file "myoutput1.txt" has already been created by the Matlab

program in Ex. 49 and stored in the same directory as the matlab code we are about to

execute. The first command opens the file "myoutput1.txt" with the status of "r", which

means "read only". The command "b = fscanf(fID1,'%7u %7u %7u \r',3)" reads one

record from the external file with file ID = fID1, using the format '%7u %7u %7u \r'.

The number "3" that follows indicates that only the first 3 elements in the record will be

read and put into the array "b". This is so the extra element, “\r” (carriage return), will

not be read.

Ex 50 Create a prompt to request user input

num1 = input('Enter your age');

if (num1 > 17)

 fprintf('You are eligible to vote')

else

 fprintf('You are not eligible to vote')

end

Remark: This program allows the input to be read not from an external file but from a

prompt on screen. The output of this program will depend on whether the number that

the user enters (which will be put into the variable "num1") is greater than 17. If the

input is expected to be a string (such as "YES", "Joe Smith"), an "s" option has to be

added to the command. For example, "name1 = input('Enter your surname', 's')".

