MAE 384 Fall 2009 Homework \#2

1. The equation,

$$
\sin (x)+\cos (x)-0.2=0,
$$

has infinite many solutions. Try to find (a) The positive solution that is closest to the origin ($x=0$), and (b) The negative solution that is closest to the origin. Both must be obtained by using the fixed point iterative method with minimum of 5 iterations (the initial guess does not count as one iteration). Show your procedure and explain how you choose the correct " $g(x)$ " in the standard form of " $x=g(x)$ " for the iterative process. 4 points
2. We wish to solve the following system of linear equations

$$
\begin{aligned}
& 6 x_{1}+2 x_{2}+3 x_{3}=2 \\
& 2 x_{1}+8 x_{2}+x_{3}=8 \\
& 2 x_{1}+x_{2}+6 x_{3}=-4
\end{aligned}
$$

(a) Find the exact solution by the method of Gauss elimination. 0.5 point
(b) Find the solution by using the Gauss-Seidel iterative method with an initial guess of $\left(x_{2}, x_{3}\right)=(0,0)$. Perform minimum of 3 iterations, i.e., update x_{1}, x_{2}, and x_{3} at least 3 times each. The initial guess does not count as an update. 3 points
(c) Taking the result from (a) as the true solution, $\boldsymbol{x}_{T} \equiv\left(x_{1}, x_{2}, x_{3}\right)_{\text {TRUE }}$, and denoting the numerical solution from (b) as $\boldsymbol{x}_{N} \equiv\left(x_{1}, x_{2}, x_{3}\right)_{\mathrm{GAUSS} \text {-SEIDEL }}$, calculate the true relative error, E, defined by

$$
E=\frac{\left\|\boldsymbol{x}_{T}-\boldsymbol{x}_{N}\right\|}{\left\|\boldsymbol{x}_{T}\right\|},
$$

where "|| ||" is Euclidean norm (cf. Eq. 4.72 in textbook) of a vector, for the outcome of each iteration in (b).

0.5 point

