
MAE384 Fall 2009   Homework #2 Discussion

Prob 1.
There are many possible choices of "g(x)" that work for (a) or (b). None will work for both. Therefore, 
we need to use two different g(x)'s to complete the solutions.  The first pair of valid choices are

            g1(x) = x + sin(x) + cos(x) - 0.2  , which works for (a) (convergence to the positive solution)

            g2(x) = x - sin(x) - cos(x) + 0.2 , which works for (b) (convergence to the negative solution)

Another pair of valid choices are

            g3(x) = cos-1 (0.2 - sin(x)) , which works for (a)

            g4(x) = sin-1 (0.2 - cos(x)), which works for (b).

One can also use g1(x) for (a) and g4(x) for (b), and so on.  There are many other forms of g(x) that will 
work.  See attached sample solution for an interesting choice of g(x) for (b).

To test whether a g(x) will work, one needs to evaluate |g'(x)| in the vicinity of the desired solution. For 
this purpose, it  is useful to plot |g'(x)| along with the original f(x) (= sin(x) + cos(x) - 0.2 for our 
problem). Figure 1 in next page shows |g'(x)| vs. f(x) for all of the 4 choices of g(x) listed above. Note 
that
           dg3/dx = cos(x)/[1 - (0.2-sin(x))2]1/2  ,
and
           dg4/dx = sin(x)/[1 - (0.2-cos(x))2]1/2  .

It can be immediately verified that all of the g(x)'s that work for a desired solution satisfy |g'(x)| < 1 in 
the neighborhood of that solution.

Prob. 2
See sample solution. (Two versions: One by hand, one using Matlab.)



Figure 1 for discussion of Prob. 1 (prepared by HPH)

                            Fig. 1  Black solid: f(x)    Red solid: |g1'(x)|    Red dashed: |g2'(x)|
                                       Blue solid: |g3'(x)|   Blue dashed: |g4'(x)|

For the record, the following is the Matlab program that does the plotting for Fig. 1. (A little trick is 
needed to plot the inverse trigonometric functions because they are undefined on certain intervals. As a 
compromise, their values are set to 999 there. Then, the domain of the plot is set to -2 < y < 3 so we 
don't see the effect of those ugly values.)

x = [-5:0.1:5];
f = sin(x)+cos(x)-0.2;
gp1 = abs(1+cos(x)-sin(x));
gp2 = abs(1-cos(x)+sin(x));
for k = 1:101
    if (cos(x(k)) > -0.8)
        gp3(k) = abs(sin(x(k))/sqrt(1-(0.2-cos(x(k)))^2));
    else
        gp3(k) = 999.;
    end
    if (sin(x(k)) > -0.8)
        gp4(k) = abs(cos(x(k))/sqrt(1-(0.2-sin(x(k)))^2));
    else
        gp4(k) = 999.;
    end
    z(k) = 0;
end
plot(x,f,'k-',x,gp1,'r-',x,gp2,'r-.',x,gp3,'b-',x,gp4,'b-.',...
    x,z,'k--','LineWidth',2)
axis([-5 5 -2 3])



Solution, HW2 Prob 1        Thanks to Ben Warner

(Continued to next page)



(Continued)



Solution, HW2 Prob 2 (by hand)      Thanks to Sean Lucas

(Continued to next page)



(Continued)



Solution, HW2 Prob 2  (Matlab code, prepared by HPH)

The following program is for both 2(b) and 2(c).  From 2(a), we have obtained the exact solution as (x1, 
x2,  x3) = (0.5, 1, -1).  They are given in the program as (x1true, x2true, x3true).  The 3rd line is for 
calculating the norm of the true solution.  The first three lines within the loop are the formula for the 
iteration. The Gauss-Seidel method is perfect for programming: As we write the formula for x1, x2, and 
x3 in sequence, we automatically adopt the latest updates in all of the formula. The 4th line inside the 
loop calculates the true relative error for the outcome of each iteration.

x2 = 0; x3 = 0;
x1true = 0.5; x2true = 1; x3true = -1;
base = sqrt(x1true^2+x2true^2+x3true^2);
for k = 1:8
    x1 = 1/3 - x2/3 - x3/2;
    x2 = 1 - x1/4 - x3/8;
    x3 = -2/3 - x1/3 - x2/6;
    tre = sqrt((x1-x1true)^2+(x2-x2true)^2+(x3-x3true)^2)/base;
    fprintf('Iteration No.%2i yields (x1,x2,x3) = (%7.4f, %7.4f, %7.4f) \n',...
        k,x1,x2,x3)
    fprintf('               True relative error = %8.5f \n',tre)
end

Outcome:

Iteration No. 1 yields (x1,x2,x3) = ( 0.3333,  0.9167, -0.9306) 
               True relative error =  0.13257 
Iteration No. 2 yields (x1,x2,x3) = ( 0.4931,  0.9931, -0.9965) 
               True relative error =  0.00694 
Iteration No. 3 yields (x1,x2,x3) = ( 0.5006,  0.9994, -1.0001) 
               True relative error =  0.00055 
Iteration No. 4 yields (x1,x2,x3) = ( 0.5002,  1.0000, -1.0001) 
               True relative error =  0.00017 
Iteration No. 5 yields (x1,x2,x3) = ( 0.5001,  1.0000, -1.0000) 
               True relative error =  0.00004 
Iteration No. 6 yields (x1,x2,x3) = ( 0.5000,  1.0000, -1.0000) 
               True relative error =  0.00001 
Iteration No. 7 yields (x1,x2,x3) = ( 0.5000,  1.0000, -1.0000) 
               True relative error =  0.00000 
Iteration No. 8 yields (x1,x2,x3) = ( 0.5000,  1.0000, -1.0000) 
               True relative error =  0.00000 


