(1) $f(x)=\sin ^{\prime}\left(x^{2}\right)$
(a) $f^{\prime}(x)=\cos \left(x^{2}\right)(2 x)$
(b) Two-point central difference scheme

$$
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i-1}\right)}{2 h} \quad h=0.1, h=0.05
$$

$h=0.1$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{f(x+0.1)-f(x-0.1)}{2(0.1)} \\
& f^{\prime}(x)=\frac{\sin \left[(x+0.1)^{2}\right]-\sin \left[(x-0.1)^{2}\right]}{0.2}
\end{aligned}
$$

$h=0.05$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{f(x+0.05)-f(x-0.05)}{2(0.05)} \\
& f^{\prime}(x)=\frac{\sin \left[(x+0.05)^{2}\right]-\sin \left[(x-0.05)^{2}\right]}{0.1}
\end{aligned}
$$

(c) Four-point central difference scheme

$$
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i-2}\right)-8 f\left(x_{i-1}\right)+8 f\left(x_{i+1}\right)-f\left(x_{i+2}\right)}{12 h}
$$

$$
h=0.1 \quad f^{\prime}(x)=\frac{f(x-0.2)-8 f(x-0.1)+8 f(x+0.1)-f(x+0.2)}{1.2}
$$

$$
f^{\prime}(x)=\frac{\sin \left[(x-0.2)^{2}\right]-8 \sin \left[(x-0.1)^{2}\right]+8 \sin \left[(x+0.1)^{2}\right]-\sin \left[(x+0.2)^{2}\right]}{1.2}
$$

$h=0.05 f^{\prime}(x)=\frac{f(x-0.1)-8 f(x-0.05)+8 f(x+0.05)-f(x+0.1)}{0.6}$

$$
f^{\prime}(x)=\frac{\sin \left[(x-0.1)^{2}\right]-8\left[(x-0.05)^{2}\right]+8 \sin \left[(x+0.05)^{2}\right]-\sin \left[(x+0.1)^{2}\right]}{0.6}
$$

(Matlab codes and plots in next two pages)

```
(1b)
>>1=(0:0.01:5);
>> yl=2*x1.*}\operatorname{cos(x1.^2);
>> x2=(0:0.1:5);
>> y2=(\operatorname{sin}((x2+0.1).^2)-\operatorname{sin}((x2-0.1).^2))/0.2;
>> x3=(0:0.05:5);
>> y }=(\operatorname{sin}((x3+0.05).^2)-\operatorname{sin}((x3-0.05).^2))/0.1
>> plot(x1,y1,'r-',x2,y2,'b-',x3,y3,'g-')
```


Red $=$ Analytic Blue $=$ Numerical, $\mathrm{h}=0.1$ Green $=$ Numerical, $\mathrm{h}=0.05$
(1c)
$\gg \mathrm{x} 1=(0: 0.01: 5)$;
$\gg y 1=2 * x 1 . * \cos (x 1 . \wedge 2) ;$
$\gg x 2=(0: 0.1: 5)$;
$\gg y 2=\left(\sin \left((x 2-0.2) .^{\wedge} 2\right)-8^{*} \sin \left((x 2-0.1) \wedge^{\wedge} 2\right)+8^{*} \sin \left((x 2+0.1) .^{\wedge} 2\right)-\sin \left((x 2+0.2) .^{\wedge} 2\right)\right) / 1.2 ;$
$\gg x 3=(0: 0.05: 5)$;
$\gg y 3=\left(\sin \left((x 3-0.1) .^{\wedge} 2\right)-8 * \sin \left((x 3-0.05) .^{\wedge} 2\right)+8 * \sin \left((x 3+0.05) .^{\wedge} 2\right)-\sin \left((x 3+0.1) .^{\wedge} 2\right)\right) / 0.6 ;$
>> plot(x1,y1,'r-',x2,y2,'b-',x3,y3,'g-')

Prob 2
2) Start with Taylor series
(I) $f\left(x_{i-1}\right)=f\left(x_{i}\right)-f^{\prime}\left(x_{i}\right) 2 h+f^{\prime \prime}\left(x_{i}\right) \frac{4 h^{2}}{2}$

$$
\begin{aligned}
& \text { (II) } f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+f^{\prime \prime}\left(x_{i}\right) \frac{h^{2}}{2} \\
& 1 \cdot(I)+2 \cdot(\text { II })=f\left(x_{i-1}\right)+2 f\left(x_{i+1}\right)=3 f\left(x_{i}\right)+3 h^{2} f^{\prime \prime}\left(x_{i}\right)+O\left(h^{3}\right) \\
& f^{\prime \prime}\left(x_{i}\right)=\frac{f\left(x_{i}-1\right)+2 f\left(x_{i+1}\right)-3 f\left(x_{i}\right)}{3 h^{2}}+O(h)
\end{aligned}
$$

Prob 3
3) Start wi Taylor series

$$
\left.\begin{array}{rl}
f\left(x_{i+1}\right)= & f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+(1 / 2) f^{\prime \prime}\left(x_{i}\right) h^{2}+(1 / 6) f^{\prime \prime}\left(x_{i}\right) h^{3} \\
f\left(x_{i+2}\right)= & f\left(x_{i}\right)+2 f^{\prime}\left(x_{i}\right) h+2 f^{\prime \prime}\left(x_{i}\right) h^{2}+(4 / 3) f^{\prime \prime \prime}\left(x_{i}\right) h^{3} \\
f\left(x_{i}+3\right)= & f\left(x_{i}\right)+3 f^{\prime}\left(x_{1}\right) h+(9 / 2) f^{\prime \prime}\left(x_{i}\right) h^{2}+(27 / 6) f^{\prime \prime \prime}\left(x_{i}\right) h^{3} \\
& 1 \cdot 1 / 6+A \cdot(4 / 3)+B(27 / 6)=0 \\
& 1 \cdot 1 / 2+A \cdot(2)+B(9 / 2)=0 \\
& \left(\begin{array}{cc}
8 & 27 \\
4 & 9
\end{array}\right)\binom{A}{B}=\binom{-1}{-1} \quad A=-1 / 2 \\
B=1 / 9
\end{array}\right] \begin{aligned}
& 1 \cdot f\left(x_{i+1}\right)-(1 / 2) f\left(x_{i}+2\right)+(1 / 9) f\left(x_{i+3}\right)=(11 / 18) f\left(x_{i}\right)+(1 / 3) f^{\prime}\left(x_{i}\right) h+O\left(h^{4}\right) \\
& 18 f\left(x_{i+1}\right)=9 f\left(x_{i}+2\right)+2 f\left(x_{i}+3\right)=11 f\left(x_{i}\right)+6 h f^{\prime}\left(x_{i}\right) \\
& f^{\prime}\left(x_{i}\right)=\frac{18 f\left(x_{i+1}\right)-9 f\left(x_{i+2}\right)+2 f\left(x_{i+3}\right)-11 f\left(x_{i}\right)}{6 h}+O\left(h^{3}\right)
\end{aligned}
$$

Prob 4
4)

$$
\begin{array}{l|l|l}
\int_{0}^{5} \sin \left(x^{2}\right) d x & \text { Ans } \\
\text { Analytically, } & .527917 & \\
\text { Trapezoidal, } h=0.1, & .536317 \mathrm{~V}= & \varepsilon=.0084 \\
h=0.01 & .528000 \mathrm{~V} & \varepsilon=.000083 \\
h=0.001 & .527918 \mathrm{~V} & \varepsilon=.000001
\end{array}
$$

see attached MATLAB code
4) $\% \mathrm{hw} 4$
\%prob 4
format long
$\mathrm{N}=50$; \%changes to 500 and 5000
$a=0$;
$\mathrm{b}=5$;
$\mathrm{h}=(\mathrm{b}-\mathrm{a}) / \mathrm{N}$;
func=inline('sin(x.^2)','x');
$x=a: h: b$;
for $i=1: N+1$
$\mathrm{F}(\mathrm{i})=$ fund ($\mathrm{x}(\mathrm{i}))$;
end
$\mathrm{I}=\mathrm{h} *(\mathrm{~F}(1)+\mathrm{F}(\mathrm{N}+1)) / 2+\mathrm{h} * \operatorname{sum}(\mathrm{~F}(2: \mathrm{N}))$

