MAE384 Fall 2009 Homework \#5

In all homework problems, the argument of a sinusoidal function is always in radian

1. Evaluate the integral

$$
I=\int_{0}^{6} x \cos \left(x^{2}\right) d x
$$

using the Composite Simpson's $3 / 8$ method with (i) $h=0.2$, and (ii) $h=0.05$. Compare your results with the exact value obtained from the analytic expression of I. ($\mathbf{3}$ points)
2. Solve the initial value problem (u is a function of x)

$$
\frac{d u}{d x}=\sin (u) \cos (u) \quad, \quad u(0)=\pi / 4
$$

using Euler's explicit method with (i) $h=0.5$, (ii) $h=0.2$. In both cases, find the solution for the domain, $0 \leq x \leq 10$. Plot the numerical solutions against the analytic solution, $u(x)=\tan ^{-1}(\exp (x))$. (Hint: In Matlab, the function for "arctan" is atan(x).) (3 points)
3. Solve the initial value problem

$$
\frac{d u}{d x}=-0.3 u^{2}+0.1 x^{2} u-0.5, u(1)=3
$$

using the 4th order Runge-Kutta method with $h=0.2$ to obtain the value of $u(1.4)$. (Note: This requires just two steps: Step 1 from $x=1$ to 1.2, and Step 2 from 1.2 to 1.4. See a relevant exercise in Example 8-5 in the textbook.) (3 points)

