1. A boundary value problem is given as

$$
\frac{d^{2} u}{d x^{2}}+5 \frac{d u}{d x}+4 u=0 \quad, u(0)=0, u(1)=e^{-3}-1
$$

Discretize this system by using the three-point central difference scheme (Fifth formula under "Second Derivative" in Table 6-1) for the second derivative, u ", and the two-point forward difference scheme (First formula under "First Derivative" in Table 6-1 in bottom of p . 247) for the first derivative, u^{\prime}. Then, solve the problem numerically for the two cases with (i) $\Delta x=0.25$, and (ii) $\Delta x=0.1$. Plot the numerical solutions against the analytic solution, $u(x)=e^{1-4 x}-e^{1-x} .(4$ points)
2. Find the general solution of the partial differential equation,

$$
\frac{\partial^{2} u}{\partial x \partial y}-2 u=0
$$

using the method of separation of variables. (2 points)
3. The following PDE,

$$
\frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}
$$

is defined on the semi-infinite domain with $x \in(-\infty, \infty), t \in[0, \infty)$.
(a) Discretize the equation by using the two-point forward difference scheme for $\partial u / \partial t$ and the three-point central difference scheme for $\partial^{2} u / \partial x^{2}$. Write the resulted finite difference formula for the PDE into the form,

$$
u_{i, j+1}=P u_{i-1, j}+Q u_{i, j}+R u_{i+1, j},
$$

where $u_{i, j} \equiv u(i \Delta x, j \Delta t)$. What are the P, Q, and R as a function of $(\Delta x, \Delta t)$?
(b) Choosing $\Delta x=0.5, \Delta t=0.1$, and the boundary condition (given at $t=0$),

$$
u_{5,0}=1, \text { and } u_{i, 0}=0 \text { for all } i \neq 5,
$$

determine the values of all non-zero $u_{i, j}$ at $j=1$ and 2, i.e., at $t=0.1$ and 0.2 .
(3 points)

