## MAE384 Fall 2009 HW6 Discussion

## Prob 1 Solution Thanks to Nayeli Gomez

(The reference solution incorporated the end points into the matrices so they become $5 \times 5$ and $11 \times 11$ for $\Delta x=0.25$ and $\Delta x=0.1$, respectively. Since $u(x)$ are given at the end points, the matrices could be reduced to $3 \times 3$ and $9 \times 9$, i.e., for the interior points only. This is a very minor detail. - HPH)

$$
\begin{aligned}
& \frac{d^{2} u}{d x^{2}}+5 \frac{d u}{d x}+4 u=0 ; v(0)=0, u(1)=e^{-3}-1 \\
& \frac{u_{i-1}-2 u_{i}+u_{i+1}}{(\Delta x)^{2}}+\frac{5 u_{i+1}-5 u_{i}}{\Delta x}+4 v_{i}=0 \\
& \text { (i) } \Delta x=0.25 ; \quad v_{0}=0, v_{y}=e^{-3}-1 \\
& v_{i-1}-2 v_{i}+v_{i+1}+\frac{5}{4} v_{i+1}-\frac{5}{4} v_{i}+\frac{1}{4} v_{i}=0 \\
& v_{i-1}-3 v_{i}+\frac{9}{4} v_{i+1}=0 \\
& \begin{array}{l}
U_{0}-3 U_{1}+\frac{9}{4} U_{2}=0 \\
U_{1}-3 U_{2}+\frac{9}{4} U_{3}=0 \\
U_{2}-3 U_{3}+\frac{9}{4} U_{4}=0
\end{array} \quad\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 & -3 & \frac{9}{4} & 0 & 0 \\
0 & 1 & -3 & \frac{9}{4} & 0 \\
0 & 0 & 1 & -3 & \frac{9}{4} \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
U_{0} \\
U_{1} \\
U_{2} \\
U_{3} \\
U_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
e^{-3}-1
\end{array}\right] \\
& \text {... continued on matlab... } \\
& \text { (ii) } \Delta x=0.1 ; v_{0}=0, v_{10}=e^{-3}-1 \\
& U_{i-1}-2 U_{i}+U_{i+1}+\frac{1}{2} U_{i+1}-\frac{1}{2} U_{i}+\frac{1}{25} U_{i}=0 \\
& U_{i-1}-\frac{123}{50} U_{i}+\frac{3}{2} U_{i+1}=0 \\
& \begin{array}{l}
U_{0}-\frac{123}{50} U_{1}+\frac{3}{2} U_{2}=0 \\
U_{1}-\frac{123}{50} U_{2}+\frac{3}{2} U_{3}=0 \\
U_{2}-\frac{123}{50} U_{3}+\frac{3}{2} U_{4}=0 \\
U_{3}-\frac{123}{50} U_{4}+\frac{3}{2} U_{5}=0 \\
U_{4}-\frac{123}{50} U_{5}+\frac{3}{2} U_{6}=0 \\
U_{5}-\frac{123}{50} U_{6}+\frac{3}{2} U_{7}=0 \\
U_{6}-\frac{123}{50} U_{1}+\frac{3}{2} U_{8}=0 \\
U_{1}-\frac{123}{50} U_{8}+\frac{3}{2} U_{9}=0 \\
U_{8}-\frac{123}{50} U_{9}+\frac{3}{2} U_{10}=0
\end{array} \quad\left[\begin{array}{ccccccccccc}
1 & -0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -\frac{123}{50} & \frac{3}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -\frac{123}{50} & \frac{3}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -\frac{123}{50} & \frac{3}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -\frac{123}{50} & \frac{3}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -\frac{123}{50} & \frac{3}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -\frac{123}{50} & \frac{3}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -\frac{123}{50} & \frac{3}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -\frac{123}{50} & \frac{3}{2} 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -\frac{123}{50} & \frac{3}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
U_{0} \\
U_{1} \\
U_{2} \\
U_{3} \\
U_{4} \\
U_{5} \\
U_{6} \\
U_{1} \\
U_{8} \\
U_{9} \\
U_{10}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
e^{-3}-1
\end{array}\right]
\end{aligned}
$$

...continued on matlab...
Matlab code and plot are in next two pages.
(Prob 1 Solution continued)
Matlab code

```
%%Problem 1%%
%%(i)%%
A=[1 0 0 0 0; 1 -3 9/4 0 0; 0 1 -3 9/4 0; 0 0 1 -3 9/4; 0 0 0 0 1];
B=[0; 0; 0; 0; exp(-3)-1];
U1=inv(A)*B
U1 =
```

0
-0.8017
-1.0690
-1.0690
-0.9502
\%\%(ii) \% \%

$01-123 / 503 / 20000000 ; 001-123 / 503 / 20000000 ; \ldots$


$000000001-123 / 503 / 20 ; 000000001-123 / 503 / 2 ; \ldots$
$000000000001] ;$
$\mathrm{D}=[0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; \exp (-3)-1]$;
$\mathrm{U} 2=\operatorname{inv}(\mathrm{C}) * \mathrm{D}$
2 =

$$
\begin{array}{r}
0 \\
-0.5134 \\
-0.8420 \\
-1.0386 \\
-1.1420 \\
-1.1804 \\
-1.1746 \\
-1.1394 \\
-1.0855 \\
-1.0207 \\
-0.9502
\end{array}
$$

$\%$ plot $\%$
$x 1=[0: 0.25: 1] ; x 2=[0: 0.1: 1]$;
$x=[0: 0.01: 1] ; y=\exp (1-4 * x)-\exp (1-x) ;$
plot(x1, U1,'r', x2, U2,'g', x,y,'b')
(Prob 1 Solution continued)
Plot of numerical and analytic solutions


## Prob 1 Another example of Matlab code (prepared by HPH)

This code works for any given number of grid points for the interval, $[0,1]$. It is based on the formulation of the reference solution in page 1. The parameter " N " is the number of intervals; $\mathrm{N}=4$ and $\mathrm{N}=10$ correspond to $\Delta x=0.25$ and $\Delta x=0.1$, respectively. The example below is for $\Delta x=0.01$. In this case, the numerical solution (see plot) is almost identical to the analytic solution.

```
N = 100;
h = 1/N;
x = [0:h:1];
a = zeros(N+1,N+1);
b = zeros(N+1);
a(1,1) = 1;
a(N+1,N+1) = 1;
for i = 2:N
    a(i,i-1) = 1;
    a(i,i) = 4*h^2-5*h-2;
    a(i,i+1) = 1+5*h;
end
b(1) = 0;
b(N+1) = exp(-3)-1;
u = a\b;
plot(x,u)
```


2)

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x \partial y}-2 u=0 \quad u(x, y)=G(x) H(y) \\
& \frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial y}\right) \quad \frac{\partial u}{\partial y}=G(x) \frac{d H}{d y} \\
& \Rightarrow \frac{\partial^{2} u}{\partial x \partial y}=\frac{d G}{d x} \cdot \frac{d t}{d y} \\
& \Rightarrow \frac{d G}{d x} \frac{d H}{d y}=2 G H \quad \frac{1}{G} \frac{d G}{d x}=\frac{2 H}{\frac{d H}{d y}} \\
& \begin{array}{l}
\frac{1}{G} \frac{d G}{d x}=C \quad \frac{2 H}{\frac{d H}{d y}}=C \Rightarrow \int \frac{2 d y}{C}=\int \frac{1}{H} d H
\end{array} \\
& \int \frac{1}{G} d G=\int C d x \\
& \Rightarrow \ln G=C x \\
& \Rightarrow G(x)=k_{1} e^{c x} \\
& \Rightarrow h H=\frac{2 y}{C} \\
& \Rightarrow H(y)=K_{2} e^{\frac{2 y}{c}} \\
& u(x, y)=G(x) H(y) \Rightarrow u(x, y)=k \cdot \exp \left(c x+\frac{2 y}{c}\right)
\end{aligned}
$$

Prob 3 Solution Thanks to Cyle Teal
3) $\frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}$

$$
\frac{\partial u}{\partial t}=\frac{u_{i, j+1}-u_{i, j}}{\Delta t} \quad \frac{\partial^{2} u}{\partial x^{2}}=\frac{u_{i-1, j}-2 u_{i, j}+u_{i+1, j}}{(\Delta x)^{2}}
$$

(a)

$$
\begin{aligned}
& \frac{u_{i, j+1}-u_{i, j}}{\Delta t}=\frac{2\left(u_{i-1, j}-2 u_{i, j}+u_{i+1, j}\right)}{(\Delta x)^{2}} \\
& u_{i, j+1}=\frac{2 \Delta t}{(\Delta x)^{2}}\left(u_{i-1, j}-2 u_{i, j}+u_{i+1, j}\right)+u_{i, j} \\
\Rightarrow & u_{i, j+1}=\frac{2 \Delta t}{(\Delta x)^{2}} u_{i-1, j}+\left(-\frac{4 \Delta t}{(\Delta x)^{2}}+1\right) u_{i, j}+\frac{2 \Delta t}{(\Delta x)^{2}} u_{i+1, j} \\
\Rightarrow & P=\frac{2 \Delta t}{(\Delta x)^{2}} \quad Q=1-\frac{\Delta \Delta t}{(\Delta x)^{2}} \quad R=\frac{2 \Delta t}{(\Delta x)^{2}}
\end{aligned}
$$

(b)


$$
\begin{aligned}
& \Delta t=0.1 \\
& \Delta x=.5
\end{aligned}
$$

$$
\begin{aligned}
& U_{4,1}=\frac{2(0.1)}{(.5)^{2}} u_{3,0}^{0}+\left(1-\frac{4(.1)}{(.5)^{2}}\right)^{x} u_{4,0}^{0}+\frac{2(.1)}{(.5)^{2}} U_{5,0}^{0} \\
& \Rightarrow U_{4,1}=\frac{2(.1)}{(.5)^{2}}(1) \Rightarrow U_{4,1}=.8 \\
& U_{5,1}=\left(1-\frac{4(.1)}{(.5)^{2}}\right) U_{5,0} \Rightarrow U_{5,1}=-.6
\end{aligned}
$$

(Continued)
(Prob 3 Solution continued)

$$
\begin{aligned}
& u_{3,2}=.8 u_{2,1}-.6 u_{3,1}^{0}+.8 u_{4,1} \\
& \Rightarrow u_{3,2}=.8(.8) \Rightarrow u_{3,2}=.64 \\
& u_{4,2}=.8 u_{3,1}-.6 u_{4,1}+.8 u_{5,1} \\
& \Rightarrow u_{4,2}=-.6(.8)+.8(-.6) \Rightarrow u_{4,2}=.96 \\
& u_{5,2}=.8 u_{4,1}-.6 u_{5,1}+.8\left(u_{6,1}\right) \\
& u_{5,2}=.8(.8)-.6(-.6)+.8(.8) \Rightarrow \sqrt{u_{5,2}=1.64} \\
& u_{6,2}=.8 u_{5,1}-.6 u_{6,1}+.8 u_{7,1}^{0} \\
& u_{6,2}=.8(-.6)-.6(.8) \Rightarrow u_{6,2}=-.96 \\
& u_{7,2}=.8 u_{6,1}-.6 u_{7,1}+.8 u_{1,1} \\
& u_{7,2}=.8(.8)
\end{aligned}
$$

