Introduction to Partial Differential Equation (IV): Further examples for Laplace Equation

Example 1 (irregular domain): Solve Laplace equation within a
T-shaped domain as shown below. For the simplest case (assume $\Delta x=\Delta y$ and with minimum resolution), we have

where $u N$ are unknowns and $b N$ are known values of $u(x, y)$ given by the boundary conditions. Using 2nd order central difference in x and y, the discretized version of Laplace equation becomes

$$
\begin{array}{rlrl}
-4 \mathrm{u} 1+\mathrm{u} 2 & & =-(\mathrm{b} 2+\mathrm{b} 14+\mathrm{b} 16) \\
\mathrm{u} 1-4 \mathrm{u} 2+\mathrm{u} 3+\mathrm{u} 4 & & =-\mathrm{b} 3 \\
\mathrm{u} 2+-4 \mathrm{u} 3 & & =-(\mathrm{b} 4+\mathrm{b} 6+\mathrm{b} 8) \\
\mathrm{u} 2
\end{array}
$$

which can be readily solved by standard matrix manipulations (e.g., Gauss elimination).

Example 2 (unequal Δx and Δy) : Solve Laplace equation within a tall rectangular domain with the grid shown below and with the setting of $\Delta y=2 \Delta x$. Use $2 n d$ order central difference scheme for both x and y.

Recall that the finite difference formula for Laplace equation is (using the convention that $u(i, j)$ is the value of u at the $i-t h$ grid point in x and j-th grid point in y)

$$
\begin{aligned}
& u(i+1, j)-2 u(i, j)+u(i-1, j) \quad u(i, j+1)-2 u(i, j)+u(i, j-1) \\
& \text {------------------------ }+ \text {----------------------------- = } 0
\end{aligned}
$$

$(\Delta \mathrm{x})^{\wedge} 2$
$(\Delta \mathrm{y})^{\wedge} 2$
With $\Delta y=2 \Delta x$, it becomes

$$
4 u(i+1, j)-8 u(i, j)+4 u(i-1, j)+u(i, j+1)-2 u(i, j)+u(i, j-1)=0,
$$

or

$$
-10 u(i, j)+4 u(i+1, j)+4 u(i-1, j)+u(i, j+1)+u(i, j-1)=0 .
$$

Using this formula and the grid system shown above, we have

```
    -10 u1 + 4 u2 + u3 = -(4 b12 + b2)
    4 u1 - 10 u2 + u4 = - (b3 + 4 b5)
        u1 - 10 u3 + 4 u4 = -(b9 + 4 b11)
            u2 + 4 u3 - 10 u4 = - (4 b 6 + b8)
```

which can be readily solved with typical matrix manipulation. Beware that the unequal weight for x and y has to be applied to the boundary values, too. For example, in the right hand side of the equation for the first row, we have a factor of 4 in front of bl2 but a factor of only 1 in front of b2.

