1 point $=1 \%$ of your total score for the semester

In all homework and exams, the argument of a sinusoidal function is always in radian, never in degree

1. You are given a toy calculator that has only one function of multiplying two numbers, both are restricted to be between 0.000 and 0.999 with only a 3 -digit accuracy. Moreover, after performing the calculation, the machine will retain only 3 digits (to the right of the floating point) as its outcome. For instance, given $\mathrm{A}=0.318$, the precise value of $\mathrm{A} \times \mathrm{A}$ should be 0.101124 while the calculator will produce 0.101 . For the calculation of $\mathrm{A} \times \mathrm{A} \times \mathrm{A}$, the process will unfold as the following

$$
\begin{aligned}
& \mathrm{A}=0.318 \\
& \mathrm{~A} \times \mathrm{A}=0.101124 \Rightarrow \text { calculator retains } \underline{0.101} \\
& \mathrm{~A} \times \mathrm{A} \times \mathrm{A}=(\mathrm{A} \times \mathrm{A}) \times \mathrm{A}=\underline{0.101} \times 0.318=0.032118 \Rightarrow \text { calculator retains } \underline{0.032} \text { as final answer }
\end{aligned}
$$

The underlined numbers are those that have been trimmed by the calculator. Note that the exact value of $\mathrm{A} \times \mathrm{A} \times \mathrm{A}$ is 0.032157432 . Using this toy calculator, and given $\mathrm{A}=0.873$, evaluate A^{2}, $\mathrm{A}^{3}, \mathrm{~A}^{4}, \ldots$, to A^{10}. Compare the results with those evaluated by using a real calculator (or Matlab). Treat the latter as the "true" values to evaluate the "true relative error" (cf. Eq. 1.17 in textbook) produced by the toy calculator. Plot the error as a function of N , the exponent of A (e.g., $\mathrm{N}=4$ for A^{4}). Discuss your results. [1.5 points]
2. Find the positive solution of the equation

$$
\cos (x)=0.3 x
$$

using the Bisection method with [0,2] chosen as the initial interval. The solution will be considered satisfactory if its uncertainty (numerical error) is within ± 0.02. [2.5 points]
3. (a) Given $f(x) \equiv \mathrm{e}^{-x}-\sin (x)-0.2$, find the solutions of $f(x)=0$ within the interval of $0<x<5$ by Newton's method. If there are more than one solutions, find them all. For this problem, a numerical solution, x_{N}, will be considered satisfactory if $\left|x_{\mathrm{N}}-x_{\mathrm{N}-1}\right|<0.01$, where x_{N} is the solution after the N -th iteration. (The initial guess is x_{0}.) [3 points] (b) Discuss how the choice of the initial guess affects the solution. You are encouraged to systematically explore the interval of $0<x_{0}<5$, but even a few choices of $x_{0}=0.5,1.75,3.0$, and 4.7 will be useful. [1 point]

