Prob 1 Solution and Matlab example #1 (prepared by HPH)

Many have obtained the solution for this problem by hand, which is perfectly fine. With the toy calculator, one can "keep 3 digits" by chopping or rounding. Either is acceptable. This first example uses chopping. Matlab examples #2 and #3 use rounding and chopping, respectively.

```
A = 0.873; B = A; power = [1:10]; TRE(1) = 0;
for ipower = 2:10
    Btrue = A^ipower;
    B = B*A;
    B = (B*1000000-mod(B*1000000,1000))/1000000;
    TRE(ipower) = 100*abs(B - Btrue)/abs(Btrue);
end
plot(power,TRE,'-o','MarkerFaceColor','b');xlabel('N');ylabel('TRE in %')
```


Prob 1 Matlab example #2 (Thanks to Andrew Shabilla)

This program considers "rounding" instead of "chopping".

1. Matlab code:

Problem Script

```
clear all
clc
a = .873;
atrue = a;
x = [1:10];
for exp = [1:9]
    a(exp + 1) = a(1)*a(exp);
    atrue(exp + 1) = atrue(1)*atrue(exp);
    a(exp + 1) = Trunc(a(exp + 1), 3);
     n(exp) = exp;
010
end
a
atrue
error = abs((atrue - a)./(atrue));
plot(x,error)
ylabel('Absolute Fractional Error');
xlabel('Iterations');
```

Trunc Function

```
function [ ntrunc ] = Trunc( n,decs)
%Rounds a number to the specified number of decimal places
```

```
nint = n*(10^decs);
nint2 = round(nint);
ntrunc = nint2*(10^-decs);
end
```


Prob 1 Matlab example #3 (Thanks to Audrey Nash)

This program uses "chopping". It produces a plot (omitted here) similar to that in Example #1.

```
% Problem 1: Matlab Code
% toy calculator values
A=0.873;
A2=1;
c=1;
for i=1:10
        AE=A*A2;
        AE=floor(AE*10^3)/(10^3);
        A2=AE;
        y(i) = A2;
end
У
% true values
for t=1:10
    ATV(t) = A^t;
end
ATV
% error
for n=1:10
    error(n) = (ATV(n) - y(n)) / (ATV(n));
end
error
plot(error)
xlabel('exponent');
ylabel('true relative error');
```

Prob 2 Solution (prepared by HPH)

Since the initial interval has a length of 2, we need to repeatedly half it until its length falls below 0.04 in order to guarantee (without knowing what the true solution is) that the true error is bounded by \pm 0.02. This requires the minimum number of iteration, N, to satisfy $2/2^{N} < 0.04$, which leads to N = 6. After performing bisection 6 times, the final interval is [1.1875, 1.21875] and the solution is 1.203125 \pm 0.015625.

Since the problem did not clarify how the "uncertainty" is defined, those who used other measures of numerical error and obtained a slightly different answer also receive full credit. For example, if one considers the criterion, $|f(x_N)| < 0.02$, $x_N = 1.1875$ may be a satisfactory answer already.

Prob 3 Solution and Matlab example #1 (prepared by HPH)

(a) The two solutions within 0 < x < 5 are 0.45173 and 3.30565. See Matlab program.

(b) Most of the initial guesses within $0 < x_0 < 5$ converge to either 0.45173 or 3.30565 as the final solution. There are exceptions: (i) Near the location where df(x)/dx = 0, the process can converge to a solution very far away from the interval [0,5]. This is because the initial "tangent" is almost horizontal, therefore it intersects with the zero line at a very large value of x. An example is the case with $x_0 = 1.75$ which converges to 216.9712. (ii) If an initial guess is located at near the boundary of two major domains within which the initial guesses converge to 0.45173 and 3.30565, it might converge to neither of them. An example is $x_0 = 4.4$ which converges to 15.90932. The attached Matlab program seeks the solutions given the initial guesses $x_0 = 0$, 0.05, 0.1, ..., 4.95, 5.0, with 1000 iterations for each initial guess. Note that for $x_0 = 4.7$, it takes 245 iterations for the process to converge to the common solution of 0.45173. If only a small number of iterations are performed, one would obtain a very large value for that case.

```
f = inline('exp(-x)-sin(x)-0.2','x');
fprime = inline('-exp(-x)-cos(x)','x');
for k = 1:100
    x0 = (k-1)*0.05;
    x00 = x0;
    for iter = 1:1000
        x1 = x0 - f(x0)/fprime(x0);
        x0 = x1;
    end
    fprintf('initial guess = %8.5f solution = %8.5f \r',x00,x1)
end
```

Results:

initial gu initial gu	ess = ess =	0.00000 0.05000 0.10000 0.20000 0.25000 0.30000 0.35000 0.40000 0.45000 0.55000 0.55000 0.60000 0.65000 0.65000 0.75000 0.75000 0.75000 0.80000 0.85000 0.90000 0.95000	solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution		0.45173 0.45173
initial gu	ess =				
initial gu	ess =	0.90000	solution		0.45173
initial gu	ess = ess =	1.00000	solution solution	=	0.45173
2	ess = ess =	1.10000 1.15000	solution solution	= =	0.45173 0.45173
initial gu	ess = ess =	1.20000 1.25000	solution solution	=	0.45173 0.45173
2	ess = ess =	1.30000 1.35000	solution solution	=	0.45173 0.45173

initial	guess	=	1.40000	solution	=	0.45173
initial	guess	=	1.45000	solution	=	0.45173
initial	guess	=	1.50000	solution	=	0.45173
initial	guess	=	1.55000	solution	=	0.45173
initial	guess	=	1.60000	solution	=	0.45173
initial	guess	=	1.65000	solution	=	0.45173
initial	guess	=	1.70000	solution	=	0.45173
initial	guess	=	1.75000	solution	=	216.97125
initial	guess	=	1.80000	solution	=	18.64820
initial	quess	=	1.85000	solution	=	9.62607
initial	guess	=	1.90000	solution	=	3.30565
initial	quess	=	1.95000	solution	=	6.08415
initial	guess	=	2.00000	solution	=	6.08415
initial	quess	=	2.05000	solution	=	9.62607
initial	quess	=	2.10000	solution	=	0.45173
initial	quess	=	2.15000	solution	=	3.30565
initial	-	=	2.20000	solution	=	3.30565
	guess		2.25000			3.30565
initial	guess	=		solution	=	
initial	guess	=	2.30000	solution	=	3.30565
initial	guess	=	2.35000	solution	=	3.30565
initial	guess	=	2.40000	solution	=	3.30565
initial	guess	=	2.45000	solution	=	3.30565
initial	guess	=	2.50000	solution	=	3.30565
initial	guess	=	2.55000	solution	=	3.30565
initial	guess	=	2.60000	solution	=	3.30565
initial	guess	=	2.65000	solution	=	3.30565
initial	guess	=	2.70000	solution	=	3.30565
initial	guess	=	2.75000	solution	=	3.30565
initial	guess	=	2.80000	solution	=	3.30565
initial	guess	=	2.85000	solution	=	3.30565
initial	guess	=	2.90000	solution	=	3.30565
initial	guess	=	2.95000	solution	=	3.30565
initial	guess	=	3.00000	solution	=	3.30565
initial	quess	=	3.05000	solution	=	3.30565
initial	guess	=	3.10000	solution	=	3.30565
initial	guess	=	3.15000	solution	=	3.30565
initial	quess	=	3.20000	solution	=	3.30565
initial	guess	=	3.25000	solution	=	3.30565
initial	quess	=	3.30000	solution	=	3.30565
initial	guess	=	3.35000	solution	=	3.30565
initial	guess	=	3.40000	solution	=	3.30565
initial	guess	=	3.45000	solution	=	3.30565
initial	guess	=	3.50000	solution	=	3.30565
initial	guess	=	3.55000	solution	=	3.30565
initial	guess	=	3.60000	solution	=	3.30565
initial	guess	=	3.65000	solution	=	3.30565
initial	quess	=	3.70000	solution	=	3.30565
initial	guess		3.75000	solution	=	3.30565
	guess	=	3.80000	solution	_	3.30565
initial	-	=		solution		
initial	guess	_	3.85000		=	3.30565
initial	guess	=	3.90000	solution	=	3.30565
initial	guess	=	3.95000	solution	=	3.30565
initial	guess	=	4.00000	solution	=	3.30565
initial	guess	=	4.05000	solution	=	3.30565
initial	guess	=	4.10000	solution	=	3.30565
initial	guess	=	4.15000	solution	=	3.30565
initial	guess	=	4.20000	solution	=	3.30565
initial	guess	=	4.25000	solution	=	3.30565
initial	guess	=	4.30000	solution	=	3.30565
initial	guess	=	4.35000	solution	=	3.30565
initial	guess	=	4.40000	solution	=	15.90932
initial	guess	=	4.45000	solution	=	0.45173
initial	guess	=	4.50000	solution	=	0.45173

initial	guess	=	4.55000	solution	=	0.45173
initial	guess	=	4.60000	solution	=	0.45173
initial	guess	=	4.65000	solution		
initial	guess	=	4.70000	solution	=	0.45173
initial	guess	=	4.75000	solution	=	22.19251
initial	guess	=	4.80000	solution	=	12.36502
initial	guess	=	4.85000	solution	=	9.62607
initial	guess	=	4.90000	solution	=	9.62607
initial	guess	=	4.95000	solution	=	12.36502

Prob 3 Matlab example #2 (Thanks to Vincent Bevilacqua)

This example shows a nice use of the "while" loop.

```
Problem 3
A)
Editor: HW1 Pr3.m
initial guess = [0.5,1.75,2.5,3.0,4.7];
for i = 1:5
    x0 = initial guess(i);
    xn = x0 - (exp(-x0) - sin(x0) - 0.2)/(-exp(-x0)-cos(x0));
    uncertainty = abs(xn - x0);
    while uncertainty >= 0.01
        xn1 = xn;
        xn = xn1 - (exp(-xn1) - sin(xn1) - 0.2)/(-exp(-xn1)-cos(xn1));
        8xn = xn-1 - f(xn-1)/f'(xn-1)
        uncertainty = abs(xn - xn1);
    end
    display(strcat('x0=',num2str(initial guess(i))));
    display(strcat('xn = ',num2str(xn,15)));
    display(strcat('|xn - xn-1| = ',num2str(uncertainty,15)));
    display(' ');
end
Command Window:
>> HW1 Pr3
x0=0.5
xn =0.451731930852224
|xn - xn - 1| = 0.000848721829151466
x0=1.75
xn =216.971250951186
|xn - xn-1| =0.000813117246565298
x0=2.5
xn =3.30565066324214
|xn - xn-1| =0.00509313103259812
x0=3
xn =3.30565113681156
|xn - xn-1| = 0.0042098052164623
x_{0=4.7}
xn =0.451732170122645
|xn - xn-1| =0.00018743807322219
```