Prob 1 Solution and Matlab example \#1 (prepared by HPH)

Many have obtained the solution for this problem by hand, which is perfectly fine. With the toy calculator, one can "keep 3 digits" by chopping or rounding. Either is acceptable. This first example uses chopping. Matlab examples \#2 and \#3 use rounding and chopping, respectively.

```
A = 0.873; B = A; power = [1:10]; TRE(1) = 0;
for ipower = 2:10
    Btrue = A^ipower;
    B = B*A;
    B = (B*1000000-mod (B*1000000,1000))/1000000;
    TRE(ipower) = 100*abs(B - Btrue)/abs(Btrue);
end
plot(power,TRE,'-o','MarkerFaceColor','b');xlabel('N');ylabel('TRE in %')
```


Prob 1 Matlab example \#2 (Thanks to Andrew Shabilla)
This program considers "rounding" instead of "chopping".

1. Matlab code:
 Problem Script

```
clear all
clc
a=.873;
atrue = a;
x=[1:10];
for exp = [1:9]
    a(exp + 1)=a(1)*a(exp);
    atrue(exp + 1) = atrue(1)*atrue (exp);
    a(exp + 1) = Trunc(a(exp + 1),3);
% n(exp) = exp;
end
a
atrue
error = abs((atrue - a)./(atrue));
plot(x,error)
ylabel('Absolute Fractional Error');
xlabel('Iterations');
```


Trunc Function

```
function [ ntrunc ] = Trunc( n,decs)
```

function [ntrunc] = Trunc(n,decs)
%Rounds a number to the specified number of decimal places
%Rounds a number to the specified number of decimal places
nint = n* (10^decs);
nint = n* (10^decs);
nint2 = round(nint);
nint2 = round(nint);
ntrunc = nint2* (10^-decs);
ntrunc = nint2* (10^-decs);
end

```
end
```


Prob 1 Matlab example \#3 (Thanks to Audrey Nash)
This program uses "chopping". It produces a plot (omitted here) similar to that in Example \#1.

```
% Problem 1: Matlab Code
% toy calculator values
A=0.873;
A2=1;
C=1;
for i=1:10
    AE=A*A2;
    AE=floor (AE*10^3)/(10^3);
    A2=AE;
    y(i)=A2;
end
Y
% true values
for t=1:10
    ATV (t)=A^t;
end
ATV
% error
for n=1:10
    \operatorname{error}(n)=(\operatorname{ATV}(n)-y(n))/(\operatorname{ATV}(n));
end
error
plot(error)
xlabel("exponent*);
ylabel(*true relative error*);
```


Prob 2 Solution (prepared by HPH)

Since the initial interval has a length of 2, we need to repeatedly half it until its length falls below 0.04 in order to guarantee (without knowing what the true solution is) that the true error is bounded by ± 0.02. This requires the minimum number of iteration, N , to satisfy $2 / 2^{\mathrm{N}}<0.04$, which leads to $\mathrm{N}=6$. After performing bisection 6 times, the final interval is [1.1875, 1.21875] and the solution is 1.203125 ± 0.015625.

Since the problem did not clarify how the "uncertainty" is defined, those who used other measures of numerical error and obtained a slightly different answer also receive full credit. For example, if one considers the criterion, $\left|\mathrm{f}\left(\mathrm{x}_{\mathrm{N}}\right)\right|<0.02, \mathrm{x}_{\mathrm{N}}=1.1875$ may be a satisfactory answer already.

Prob 3 Solution and Matlab example \#1 (prepared by HPH)

(a) The two solutions within $0<x<5$ are 0.45173 and 3.30565. See Matlab program.
(b) Most of the initial guesses within $0<\mathrm{x}_{0}<5$ converge to either 0.45173 or 3.30565 as the final solution. There are exceptions: (i) Near the location where $\mathrm{df}(\mathrm{x}) / \mathrm{dx}=0$, the process can converge to a solution very far away from the interval $[0,5]$. This is because the initial "tangent" is almost horizontal, therefore it intersects with the zero line at a very large value of x . An example is the case with $\mathrm{x}_{0}=1.75$ which converges to 216.9712 . (ii) If an initial guess is located at near the boundary of two major domains within which the initial guesses converge to 0.45173 and 3.30565 , it might converge to neither of them. An example is $x_{0}=4.4$ which converges to 15.90932 . The attached Matlab program seeks the solutions given the initial guesses $x_{0}=0,0.05,0.1, \ldots$, $4.95,5.0$, with 1000 iterations for each initial guess. Note that for $\mathrm{x}_{0}=4.7$, it takes 245 iterations for the process to converge to the common solution of 0.45173 . If only a small number of iterations are performed, one would obtain a very large value for that case.

```
\(f=\) inline ('exp (-x)-sin (x)-0.2', 'x');
fprime \(=\) inline('-exp (-x)-cos(x)','x');
for \(k=1: 100\)
    \(x 0=(k-1) * 0.05\);
    \(\mathrm{xOO}=\mathrm{x} 0\);
    for iter \(=1: 1000\)
        \(\mathrm{x} 1=\mathrm{x} 0-\mathrm{f}(\mathrm{x} 0) / \mathrm{fprime}(\mathrm{x} 0)\);
        \(\mathrm{x} 0=\mathrm{x} 1\);
    end
    fprintf('initial guess \(=\% 8.5 f \quad\) solution \(=\% 8.5 f \quad\) r', \(\mathrm{x} 00, \mathrm{x} 1\) )
end
```

Results:

| initial guess $=0.00000$ | solution $=0.45173$ |
| :--- | :--- | :--- |
| initial guess $=0.05000$ | solution $=0.45173$ |
| initial guess $=0.10000$ | solution $=0.45173$ |
| initial guess $=0.15000$ | solution $=0.45173$ |
| initial guess $=0.20000$ | solution $=0.45173$ |
| initial guess $=0.25000$ | solution $=0.45173$ |
| initial guess $=0.30000$ | solution $=0.45173$ |
| initial guess $=0.35000$ | solution $=0.45173$ |
| initial guess $=0.40000$ | solution $=0.45173$ |
| initial guess $=0.45000$ | solution $=0.45173$ |
| initial guess $=0.50000$ | solution $=0.45173$ |
| initial guess $=0.55000$ | solution $=0.45173$ |
| initial guess $=0.60000$ | solution $=0.45173$ |
| initial guess $=0.65000$ | solution $=0.45173$ |
| initial guess $=0.70000$ | solution $=0.45173$ |
| initial guess $=0.75000$ | solution $=0.45173$ |
| initial guess $=0.80000$ | solution $=0.45173$ |
| initial guess $=0.85000$ | solution $=0.45173$ |
| initial guess $=0.90000$ | solution $=0.45173$ |
| initial guess $=0.95000$ | solution $=0.45173$ |
| initial guess $=1.00000$ | solution $=0.45173$ |
| initial guess $=1.05000$ | solution $=0.45173$ |
| initial guess $=1.10000$ | solution $=0.45173$ |
| initial guess $=1.15000$ | solution $=0.45173$ |
| initial guess $=1.20000$ | solution $=0.45173$ |
| initial guess $=1.25000$ | solution $=0.45173$ |
| initial guess $=1.30000$ | solution $=0.45173$ |
| initial guess $=1.35000$ | solution $=0.45173$ |

	1.40000	solution	0.45173
initial guess	1.45000	solution	0.45173
initial guess	1.50000	solution	0.45173
initial guess	1.55000	solution	0.45173
initial guess	1.60000	solution	0.45173
initial guess	1.65000	solution	0.45173
initial guess	1.70000	solutio	0.45173
initial guess	1.75000	solution	216.97125
initial guess	1.80000	solution	18.64820
initial guess	1.85000	so	9.62607
initial guess	1.90000	so	3.30565
initial guess	1.95000	solution	6.08415
initial guess	2.00000	solution	6.08415
initial guess	2.05000	solution	9.62607
initial guess	2.10000	sol	0.45173
initial guess	2.15000	solution	3.30565
initial guess	2.20000	solution	3.30565
initial guess	2.25000	solution	3.30565
initial guess	2.30000	solution	3.30565
initial guess	2.35000	solut	3.30565
initial guess	2.40000	solutio	3.30565
initial guess	2.45000	solution	3.30565
initial guess	2.50000	solution	3.30565
initial guess	2.55000	solu	3.30565
initial guess	2.60000	solu	3.30565
initial guess	2.65000	solutio	3.30565
initial guess	2.70000	solution	3.30565
initial guess	2.75000	solut	3.30565
initial guess	2.80000	solut	3.30565
initial guess	2.85000	solution	3.30565
initial guess	2.90000	solution	3.30565
initial guess	2.95000	solution	3.30565
initial guess	3.00000	solutio	3.30565
initial guess	3.05000	solu	3.30565
initial guess	3.10000	solution	3.30565
initial guess	3.15000	solution	3.30565
initial guess	3.20000	solut	3.30565
initial guess	3.25000	solution	3.30565
initial guess	3.30000	solutio	3.30565
initial guess	3.35000	solution	3.30565
initial guess	3.40000	solution	3.30565
initial guess	3.45000	solution	3.30565
initial guess	3.50000	solution	3.30565
initial guess	3.55000	solution	3.30565
initial guess	3.60000	solution	3.30565
initial guess	3.65000	solution	3.30565
initial guess	3.70000	solution	3.30565
initial guess	3.75000	solution	3.30565
initial guess	3.80000	solution	3.30565
initial guess	3.85000	solution	3.30565
initial guess	3.90000	solution	3.30565
initial guess	3.95000	solution	3.30565
initial guess	4.00000	solution	3.30565
initial guess	4.05000	solution	3.30565
initial guess	4.10000	solution	3.30565
initial guess	4.15000	solution	3.30565
initial guess	4.20000	solution	3.30565
initial guess	4.25000	solution	3.30565
initial guess	4.30000	solution	3.30565
initial guess	4.35000	solution	3.30565
initial guess	4.40000	solution	15.90932
initial guess	4.45000	solution	0.45173
initial guess	4.50000	solution	0.45173

```
initial guess = 4.55000 solution = 0.45173
initial guess = 4.60000 solution = 0.45173
initial guess = 4.65000 solution = 0.45173
initial guess = 4.70000 solution = 0.45173
initial guess = 4.75000 solution = 22.19251
initial guess = 4.80000 solution = 12.36502
initial guess = 4.85000 solution = 9.62607
initial guess = 4.90000 solution = 9.62607
initial guess = 4.95000 solution = 12.36502
```


Prob 3 Matlab example \#2 (Thanks to Vincent Bevilacqua)

This example shows a nice use of the "while" loop.

```
Problem 3
```

A)

Editor: HW1_Pr3.m
initial_guess $=[0.5,1.75,2.5,3.0,4.7]$;
for $i=1: 5$
$x 0=$ initial_guess(i);
$x n=x 0-(\exp (-x 0)-\sin (x 0)-0.2) /(-\exp (-x 0)-\cos (x 0)) ;$
uncertainty $=a b s(x n-x 0)$;
while uncertainty $>=0.01$
$\mathrm{xn} 1=\mathrm{xn}$;
$x n=x n 1-(\exp (-x n 1)-\sin (x n 1)-0.2) /(-\exp (-\operatorname{xn} 1)-\cos (x n 1)) ;$
$\% x n=x n-1-f(x n-1) / f^{\prime}(x n-1)$
uncertainty $=a b s(x n-x n 1)$;
end
display(strcat('x0=', num2str(initial_guess(i))));
display(strcat('xn = ', num2str(xn,15)));
display(strcat('|xn - xn-1| = ', num2str(uncertainty,15)));
display(' ');
end

Command Window:

```
>> HW1_Pr3
x0=0.5
xn =0.451731930852224
|xn - xn-1| =0.000848721829151466
x0=1.75
xn =216.971250951186
|xn -xn-1| =0.000813117246565298
x0=2.5
xn =3.30565066324214
|xn-xn-1| =0.00509313103259812
x0=3
xn =3.30565113681156
|xn -xn-1| =0.0042098052164623
x0=4.7
xn =0.451732170122645
|xn - xn-1| =0.00018743807322219
```

