Prob 1 Solution, Example 1 (prepared by HPH)

This example uses $g_{1}(x)=x+0.1\left(x e^{x}-x^{4}+0.1\right)$ and $g_{2}(x)=x-0.1\left(x e^{x}-x^{4}+0.1\right)$ for the positive and negative solutions, respectively. The factor of 0.1 helps us adjust the magnitude of $\mathrm{g}^{\prime}(\mathrm{x})$ so as to bring it to within $\left|\mathrm{g}^{\prime}(\mathrm{x})\right|<1$ in the neighborhood of the desirable solution. The original function $\mathrm{f}(\mathrm{x})$ and the first derivative of $\mathrm{g} 1(\mathrm{x})$ and $\mathrm{g} 2(\mathrm{x})$ are shown in the following figure in black, red, and blue. The good interval for the initial guess for each solution can be readily inferred from the plot. We use $x=2$ and $x=0$ for the positive and negative solutions. from the plot. The matlab code is in next page. (The actual segment of the code for finding the solution is just a few lines.)

Positive solution is 1.976937
Negative solution is -0.892466

(Matlab code for Prob 1 Example 1)

```
x = [-3:0.01:3];
f = inline('x*exp(x) -x^4+1','x');
g1 = inline('x+0.1*x*exp (x) -0.1* (x^4) +0.1',''x');
g2 = inline('x-0.1*x*exp (x) +0.1*(x^4)-0.1','x');
g1p = inline('1+0.1*exp (x) +0.1*x*exp (x) -0.4* (x^3)','x');
g2p = inline('1-0.1*exp(x) -0.1*x*exp (x) +0.4* (x^3)','x');
for k = 1:601
    p1(k) = f(x(k));
    p2(k) = g1p(x(k));
    p3(k) = g2p(x(k));
    z(k) = 0;
    zp1(k) = 1;
    zn1(k) = -1;
end
plot(x,p1,'-k',x,p2,'-r',x,p3,'-b',...
    x,z,'--k',x,zp1,'-.k',x,zn1,'-.k')
xlabel('x')
hold on; plot([0 0],[-3 3],'--k')
axis([[-3 3 -3 3])
%
% positive sol (using g1)
%
xs = 2;
for iter = 1:50
    xs = g1(xs);
end
fprintf('Positive solution is %10.6f \r',xs)
%
% Negative sol (using g2)
%
xs = 0;
for iter = 1:50
    xs = g2(xs);
end
fprintf('Negative solution is %10.6f \r',xs)
```


Prob 1 Solution, Example 2

 (This version is inspired by the work of Eduardo Perez and Lindsay Fleming. Thanks to both.)This example demonstrates another way to visualize the process of convergence. Here, $g_{1}(x)=\left(x e^{x}+1\right)^{1 / 4}$ (initial guess $=1.7$) and $g_{2}(x)=(x-1) /\left(e^{x}-x^{3}+1\right) \quad$ (initial guess $=0.5$) are chosen for the positive and negative solutions. The following figures (top for the positive solution, bottom for the negative solution) show the two curves of $y=x$ and $y=g(x)$ whose intersection is the solution. The red segments indicate the progress of the iterative process (starting from the initial guess as the red circle), in the same fashion as Fig. 3-18 in the textbook. The matlab code for the negative solution (bottom) is in next page.

Solution is 1.9768 after 19 iterations

Solution is -0.8924 after 9 iterations

(Matlab code for Prob 1 Example 2)

```
x = [-1.5:0.05:1];
g = inline('(x-1)/(exp (x) -x^3+1)','x');
for k = 1:51
        gplot(k) = g(x(k));
end
hold on
plot(x, x,'b-',x,gplot,'k-','LineWidth',1.3)
xlabel('x');ylabel('y');
legend('y=x','y=g(x)','Location','NorthWest')
axis([-1.5 1 -1.7 0.8]);
x0 = 0.5;
x1 = g(x0);
plot([x0 x1],[x1 x1],'r-','LineWidth',1.3)
plot(x0,x1,'o','MarkerEdgeColor','r')
ktot = 0
while (abs(x1-x0) > 0.0001)
    ktot = ktot+1
    x0 = x1;
    x1 = g(x0);
    plot([x0 x0],[x0 x1],'r-','LineWidth',1.3)
    plot([x0 x1],[x1 x1],'r-','LineWidth',1.3)
end
hold off
fprintf('Solution is %9.4f after %4u iterations \r',x1,ktot)
```


Prob 1 Further notes

Most people got the positive solution right. What's causing trouble is the negative solution. The following table summarizes the different forms of $\mathrm{g}(\mathrm{x})$'s you have chosen that work for the negative solution. The number in the second column indicates the number of students who chose the particular form of $g(x)$. There would be some deduction if a correct pick of $g(x)$ is accompanied by a wrong initial guess, of if an initial guess is not specified. An incorrect (improbable) pick of $\mathrm{g}(\mathrm{x})$ that "leads to the right solution" would receive no credit.

$\mathrm{g}(\mathrm{x})$	\# of students	Remarks
$-\left(x e^{x}+1\right)^{1 / 4}$	27	Note that $\left(x e^{x}+1\right)^{1 / 4}$ and $-\left(x e^{x}+1\right)^{1 / 4}$ are two distinctive choices of $\mathrm{g}(\mathrm{x})$. The former works for the positive solution while the latter works for the negative solution. Some students claimed that the former works for both (by arbitrarily inserting a negative sign in the iterative process). This would lead to a deduction.
$\begin{aligned} & x+A\left(e^{x}-x^{3}+1 / x\right) \text { or } \\ & x+A\left(x e^{x}-x^{4}+1\right) \end{aligned}$ where A is a small negative number	16	See instructor's solution which uses $A=-0.1$.
$\frac{x-1}{e^{x}-x^{3}+1}$	7	An interesting choice. See if you can figure out how to obtain this form of $\mathrm{g}(\mathrm{x})$.
$x \cos \left(x e^{x}-x^{4}+1\right)$	4	It works, but convergence is painfully slow in this case. For example, using $x=-1$ as the initial guess, it takes over 2000 iterations to reach within 0.0001 of the true solution.
$x\left(\frac{x e^{x}+1}{x^{4}}\right)^{1 / 100}$	2	Convergence is somewhat slow in this case; Needs about 200 iterations to reach a reasonably accurate result starting from the initial guess of $x=-1$.
$\left(e^{x}+1 / x\right)^{1 / 3}$	2	While this is a valid pick, it could be somewhat tricky to implement the calculation in matlab (or using a regular calculator) due to the $1 / 3$ power and the fact that the number in the parentheses is negative. You might need to use a special function ("nthroot" in matlab) to take the root or matlab would return a complex number (which is a valid root but not what we want).
$\left(x^{2} e^{x}+x\right)^{1 / 5}$	2	See above remark.
$\left(\frac{-1}{x^{-2} e^{x}-x}\right)^{1 / 3}$	1	See above remark.
$x^{5}\left(x e^{x}-x^{4}+1+1 / x^{4}\right)$	1	
Other choices that did not lead to convergence to the negative solution	31	

Prob 2 Solution (Thanks to Nicholas Ramseyer)
(a) The result of Gauss elimination is $(x 1, x 2, x 3)=(1,2,0.5)$

Matlab code for (b)-(d):

$$
K=0 ;
$$

$$
X I=0 ;
$$

$$
\mathrm{X} 2=0 ;
$$

$$
\text { X3 }=0 \text {; }
$$

fprintf('Below are the solutions for Jacobi Iteration Mehtod')
disp(' ')
disp(' ')
for $K=1: 15$
$\mathrm{N}=\mathrm{K}$;
$\mathrm{Y} 1=\mathrm{X1}$;
$Y 2=X 2 ;$
$\mathrm{Y} 3=\mathrm{X} 3$;
$\mathrm{X} 1=(9-1 * Y 2-2 * Y 3) / 6 ;$
$X 2=(13-2 * Y 1-2 * Y 3) / 5$;
$X 3=(6-1 * Y 1-1 * Y 2) / 6$;
$\mathrm{R} 1=\left(6^{*}(\mathrm{X} 1)+\right.$ 1* $\left.^{*}(\mathrm{X} 2)+2^{*}(\mathrm{X} 3)\right)-9$;
$R 2=(2 *(X 1)+5 *(X 2)+2 *(X 3))-13 ;$
$R 3=\left(1 *(X 1)+1^{*}(X 2)+6 *(X 3)\right)-6 ;$
$E=\left(\left(R 1^{\wedge} 2+R 2^{\wedge} 2+R 3^{\wedge} 2\right)^{\wedge}(1 / 2)\right) ;$
$\mathrm{E} 1(\mathrm{~K})=\mathrm{E}$;
fprintf('\%gE $\left.E \% f \quad X 1=\% 5 f, X 2=\% 5 f, X 3=\% 5 f \backslash r^{\prime}, N+1, E, X 1, X 2, X 3\right)$
end
disp(' ')
disp(' ')
fprintf('Below are the solutions for Gauss seidel Method')
disp(' ')
disp(' ')
GAUESS SEIDEL ITERATION
$\mathrm{k}=0$;
$\mathrm{x} 1=0$;
$x 2=0$;
$\mathrm{x} 3=0$;
for $k=1: 15$
$I=k$;
$\mathrm{x} 1=(9-1 * \mathrm{x} 2-2 * \mathrm{x} 3) / 6$;
$\mathrm{x} 2=(13-2 * \mathrm{x} 1-2 * \mathrm{x} 3) / 5$;
$x 3=(6-1 * x 1-1 * x 2) / 6$;
(Matlab code continues to next page)
(Prob 2, Matlab code continued)

```
    R1 = (6* (x1) + 1*(x2)+ 2* (x3)) - 9;
    R2 = (2* (X1) + 5* (X2) + 2*(x3)) - 13;
    R3 = (1*(X1) + 1*(x2) + 6* (x3)) - 6;
    e = ((R1^2 + R2^2 + R3^2)^(1/2));
    E2(k) = e;
    fprintf('%gE = %f x1 = %5f, x2 = %5f, x3 = %5f \r',I+1,e,x1,x2,x3)
end
n = 1:15;
plot(n,E1,'Color',[1 0 0])
hold on
plot(n,E2)
xlabel('Iterations','EontSize',12)
ylabel('Values of percent error','FontSize',12)
title('Jacobi vs. Gauss Seidel Plot','FontSize',14)
legend('Jacobi','Gauss Seidel')
```

Below are the solutions for Jacobi Iteration Mehtod

Below are the solutions for Gauss Seidel Method

$2 \mathrm{E}=2.881936$,
$\mathrm{E}=0.175242$	$x 1=1.027778, x 2=2.022222, x 3=0.491667$
$4 \mathrm{E}=0.003071$	$\mathrm{x} 1=0.999074, \mathrm{x} 2=2.003704, \mathrm{x} 3=0.499537$
$5 \mathrm{E}=0.002421$	$\mathrm{x} 1=0.999537, \mathrm{x} 2=2.000370, \mathrm{x} 3=0.500015$
$6 \mathrm{E}=0.000372$	$\mathrm{x} 1=0.999933, \mathrm{x} 2=2.000021, \mathrm{x} 3=0.500008$
$7 \mathrm{E}=0.000035$	$\mathrm{x} 1=0.999994, \mathrm{x} 2=1.999999, \mathrm{x} 3=0.500001$
$8 \mathrm{E}=0.000002$	$\mathrm{x} 1=1.000000, \mathrm{x} 2=2.000000, \mathrm{x} 3=0.500000$
$9 \mathrm{E}=0.00000$	$\mathrm{x} 1=1.000000, \mathrm{x} 2=2.000000, \mathrm{x} 3=$
$10 \mathrm{E}=0.000000$	$000000, \mathrm{x} 2=2.000000, \mathrm{x} 3=0.500000$
$1 \mathrm{E}=0.000000$	$\mathrm{x} 1=1.000000, \mathrm{x} 2=2.000000, \mathrm{x} 3=0.500000$
$2 \mathrm{E}=0.000000$	$\mathrm{x} 1=1.000000, \mathrm{x} 2=2.000000, \mathrm{x} 3=0.500000$
$13 \mathrm{E}=0.000000$	$\mathrm{x} 1=1.000000, \mathrm{x} 2=2.000000, \mathrm{x} 3=0.500000$
$4 \mathrm{E}=0.000000$	$x 1=1.000000, x 2=2.000000, x 3=0.500000$
$5 \mathrm{E}=0.000000$	$\mathrm{x} 1=1.000000, \mathrm{x} 2=2.000000, \mathrm{x} 3=0.500000$
$6 \mathrm{E}=0.000000$	$\mathrm{x} 1=1.000000, \mathrm{x} 2=2.000000, \mathrm{x} 3=0.500000$
$7 \mathrm{E}=0.000000$	$\mathrm{x} 1=1.000000, \mathrm{x} 2=2.000000, \mathrm{x} 3=0.500000$
$\mathrm{E}=0.000000$	$\mathrm{x} 1=1.000000, \mathrm{x} 2=2.000000, \mathrm{x} 3=0.500000$
$19 \mathrm{E}=0.000000$	$\mathrm{x} 1=1.000000, \mathrm{x} 2=2.000000, \mathrm{x} 3=0.500000$
$20 \mathrm{E}=0.000000$	$1.000000, x^{2}=2.000000, x 3=0.500000$
$21 \mathrm{E}=0.000000$	$=1.000000, x 2=2.000000, x 3=0.500000$

(Prob 2 continued)
Jacobi vs. Gauss Seidel Plot

(Prob 2 continued - Part (e))

```
clear all
close all
clc
A = [6,1,2;2,5,2;1,1,6];
% A(Row, Column)
B}=((A(1,1)^2)+(A(1,2)^2)+(A(1,3)^2)
    +(A(2,1)^2)+(A(2,2)^2) + (A(2,3)^2)...
    +(A(3,1)^2)+(A(3,2)^2)+(A(3,3)^2))^(1/2);
fprintf('Value of Norm for A is %g',B)
disp(' ')
disp(' ')
C = inv(A);
D = ((C(1,1)^2) +(C(1,2)^2) + (C(1,3)^2) ...
    +(C(2,1)^2)+(C(2,2)^2) + (C (2,3)^2)...
    +(C(3,1)^2)+(C(3,2)^2)+(C(3,3)^2))^(1/2);
fprintf('norm of inverse = %g',D)
disp(' ')
disp(' ')
E = B*D;
fprintf('Condition number is equal to %g',E)
disp(' ')
```

The condition number is 3.8147 . The system is not ill-conditioned.

