Prob 1 Solution (Thanks to Gerald O'Neill)
1 The set of following 4 pts is given

x	y
-2	0
1	-1.95
3	-1.25
5	-1.75

a) using Lagrange inters method Lagrange functions
$L_{1}=\frac{\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)}=\frac{(x-1)(x-3)(x-5)}{(-2-1)(-2-3)(-2-5)}=$ $=\frac{x^{3}-2 x^{2}+23 x-15}{(-3)(-5)(-7)}=\frac{x^{3}-9 x^{2}+23 x-15}{-105}$ $L_{2}=\frac{(x+2)(x-3)(x-5)}{(1+2)(1-3)(1-5)}=\frac{x^{3}-6 x^{2}-x+30}{24}$ $L_{3}=\frac{(x+2(x-1)(x-5)}{(3+2)(3-1)(3-5)}=\frac{x^{3}-4 x^{2}-7 x+10}{-20}$ $L_{4}=\frac{(x+2)(x-1)(x-3)}{(5+2)(5-1)(5-3)} \quad \frac{x^{3}-2 x^{2}-5 x+6}{56}$

$$
P_{\text {cl }}=\Sigma y \Sigma L
$$

$$
\begin{gathered}
\qquad y(x)=y_{1} L_{1}+y_{2} L_{2}+y_{3} L_{3}+y_{4} L_{4} \\
y(x)=-0.05 x^{3}+0.3 x^{2}-0.2 x-2 \quad \text { calc at } x=2 \\
x=2 y=-1.6
\end{gathered}
$$

b) i) Plot pts, poly ii) four lagrange functions
i) SEE MATLAB SCRIAT 1, FIG 1
ii) SEE MATLAB SCRIPT 2, FIG 2
problem 2 on next page
(Matlab code and plots in next 2 pages)

```
clear all
clc
x = [-3:.01:6];
Y = (-.05).**.^ 3+(.3).* *.^ 2+(-. 2).* *x-2;
plot (x,y)
hold on
xo = [-2 1 1 3 5}]
yo = [0 0-1.95 -1.25 -1.75];
scatter(xo, yo)
```


FIG 1


```
clear all
clc
hold off
x = [-3:.01:6];
L1 = (x.^3-9.*x.^2+23.*x-15)/-105;
L2 = (x.^3-6.*x.* 2-1.*x+30)/24;
L3 = (x.^3-4.* x.^人2-7.* x+10)/-20;
L4 = (x.^3-2.* *.^^2-5.* * + 6)/56;
plot (x,L1,x,L2,x,L3,x,L4)
```


FIG 2

Fig 2. Lagrange Functions

Note by HPH: The 4 curves shown are the Lagrange functions, L_{1}, L_{2}, L_{3}, and L_{4}. Some students plotted $y_{1} L_{1}, y_{2} L_{2}, y_{3} L_{3}$, and $y_{4} L_{4}$, which are also acceptable. In that case, the structure of L_{1} will be suppressed since $y_{1}=0$. Nevertheless, one should still plot $\mathrm{y}_{1} \mathrm{~L}_{1}$ (a flat line) to complete the solution.

Prob 2 Solution (Thanks to Gerald O'Neill)

2 Set sets given
derivatives

$$
\begin{array}{ll}
2 a_{1} x_{2}+b_{1}=2 a_{2} x_{2}+b_{2} & b_{1}-2 a_{2}-b_{2}=0 \\
2 a_{2} x_{3}+b_{2}=2 a_{3} x_{3}+b_{3} & b_{2}+6 a_{2}-6 a_{3}+b_{3}=0 \\
2 a_{3} x_{4}+b_{3}=2 a_{4} x_{3}+b_{4} & b_{3}+8 a_{3}-8 a_{4}-b_{4}=0
\end{array}
$$

$$
\begin{gathered}
f_{1}=b_{1} x_{1}+c_{1}=y_{1} \\
b_{1} x_{2}+c_{1}=y_{2} \\
f_{2}=a_{2} x_{2}^{2}+b_{2} x_{2}+c_{2}=y_{2} \\
a_{2} x_{3}^{2}+b_{2} x_{3}+c_{2}=y_{3} \\
f_{3}=a_{3} x_{3}^{2}+b_{3} x_{3}+c_{3}=y_{3} \\
a_{3} x_{4}^{2}+b_{3} x_{4}+c_{3}=y_{4} \\
f_{4}=a_{4} x_{4}^{2}+b_{4} x_{4}+c_{4}=y_{4} \\
a_{4} x_{5}^{2}+b_{4} x_{5}+c_{4}=95
\end{gathered}
$$

$$
0 \cdot b_{1}+c_{1}=1
$$

$$
1 \cdot b_{1}+c_{1}=2
$$

$$
1 \cdot a_{2}+1 \cdot b_{2}+c_{2}=2
$$

$$
9 \cdot a_{2}+3 \cdot b_{2}+c_{2}=2.5
$$

$$
9 \cdot a_{3}+3 b_{3}+c_{3}=2 \cdot 5
$$

$$
16 \cdot a_{3}+4 b_{3}+c_{3}=1
$$

$$
16 \cdot 9_{4}+464+c_{4}=1
$$

$$
36 \cdot 9_{4}+6 b_{4}+c_{4}=1
$$

$\left[\begin{array}{ccccccccccc}b_{1} & c_{1} & a_{2} & b_{2} & c_{2} & a_{3} & b_{3} & c_{3} & a_{4} & b_{4} & c_{4} \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 9 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 6 & 0 & 0 & 9 & 3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 16 & 4 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 16 & 4 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 36 & 6 & 1 \\ 1 & 0 & -2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 6 & 1 & 0 & -6 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 8 & 1 & 0 & -8 & -1 & 0\end{array}\right]\left[\begin{array}{l}b_{1} \\ c_{1} \\ a_{2} \\ b_{2} \\ a_{2} \\ a_{3} \\ b_{3} \\ c_{3} \\ a_{4} \\ b_{4} \\ c_{4} \\ 0\end{array}\right]-\left[\begin{array}{c}1 \\ 2.5 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]$

Solving in Matlab with sol= (A\B)
coeffecients $=\quad b_{1}=1 \quad c_{1}=1 \quad a_{2}=-.375 \quad b_{2}=1.75 \quad c_{2}=0.625$

$$
\begin{aligned}
& a_{3}=-1 \quad b_{3}=5.5 \quad c_{3}=-5 \quad a_{4}=1.25 \quad b_{4}=-125 \\
& c_{4}=31 \\
& f_{1}=x+1 \quad f_{2}=-375 x^{2}+1.75 x+0.625 \\
& f_{3}=-x^{2}+5.5 x-5 \quad f_{4}=1.25 x^{2}-12.5 x+31
\end{aligned}
$$

b) see mat labscriet 3 , Fig $\}$
clc
$a=[0: .01: 1] ;$
$\mathrm{b}=[1: .01: 3]$;
$c=[3: .01: 4] ;$
$d=[4: .01: 6] ;$
$\mathrm{f} 1=\mathrm{a}+1$;
$\mathrm{f} 2=-.375 . * \mathrm{~b} .{ }^{\wedge} 2+1.75 . * \mathrm{~b}+.625$;
$\mathrm{f} 3=-1$. * $^{\text {C. }}{ }^{\wedge} 2+5.5 .{ }^{*} \mathrm{C}-5$;
$\mathrm{f} 4=1.25 . * \mathrm{~d} .{ }^{\wedge} 2-12.5 . * \mathrm{~d}+31$;
$\mathrm{x}=\left[\begin{array}{lllll}0 & 1 & 3 & 4 & 6\end{array}\right] ;$
$y=\left[\begin{array}{lllll}1 & 2 & 2.5 & 1 & 1\end{array}\right] ;$
hold on
plot(a,f1,b,f2,c,f3,d,f4)
scatter (x, y)

FIG 3
Fig 3. Quadratic Splines and original data points

