Prob 1 Solution (Thanks to Kevin Antrosiglio)

```
% HOMEWORK #4 PROBLEM #1
x1 = 0:0.1:4;
h1 = 0.1;
for z1 = 2:40
        central2(z1) = (sin(exp(x1(z1+1))) - sin(exp(x1(z1-1))))/(2*h1);
end
central2(1) = central2(2);
central2(41) = central2(40);
plot(xl,central2)
hold on
for z2 = 3:39
    central4(z2) = (sin(exp(x1(z2-2))) - 8*\operatorname{sin}(\operatorname{exp}(x1(z2-1)))+8*\operatorname{sin}(\operatorname{exp}(x1(z2+1))) - \swarrow
sin(exp(x1(z2+2))))/(12*h1);
end
central4(1) = central4(3);
central4(2) = central4(3);
central4(40) = central4(39);
central4(41) = central4(39);
plot(x1,central4,'g')
x = 0:0.0001:4;
fprime = exp(x).*}\operatorname{cos}(\operatorname{exp}(x))
plot(x,fprime,'r')
legend('2-point Central Difference Scheme','4-point Central Difference Scheme','Analytick
Solution','Location','NorthWest')
xlabel('X')
ylabel('First Derivative of f(x)')
title('Homework 4 Problem 1 Part a (h=0.1)')
x2 = 0:0.01:4;
h2 = 0.01;
for z3 = 2:400
        central_2(z3) = (sin(exp(x2(z3+1))) - sin(exp(x2(z3-1))))/(2*h2);
end
central 2(1) = central 2(2);
central_2(401) = central_2(400);
figure
plot(x2,central_2)
hold on
for z4 = 3:399
    central_4(z4) = (sin(exp(x2(z4-2))) - 8* sin(exp(x2(z4-1))) + 8*\operatorname{sin}(\operatorname{exp}(x2(z4+1))) -\swarrow
sin(exp(x2(z4+2))))/(12*h2);
end
central 4(1) = central 4(3);
central 4(2) = central 4(3);
central_4(400) = central_4(399);
central_4(401) = central_4(399);
plot(x2,central_4,'g')
plot(x,fprime,'r')
legend('2-point Central Difference Scheme','4-point Central Difference Scheme','Analytick
Solution','Location', 'NorthWest')
xlabel('X')
ylabel('Eirst Derivative of f(x)')
```

Plots in next 2 pages

Homework 4 Problem 1 Part b (h=0.01)

Note: For $\mathrm{h}=0.01$ the numerical solutions are almost indistinguishable from the analytic solution.

Prob 2 Solution (Thanks to Olen Hatch)

$$
\begin{aligned}
& f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+\frac{f^{\prime \prime}\left(x_{i}\right) h^{2}}{2}+\frac{f^{\prime \prime \prime}\left(x_{i}\right) h^{3}}{6}+0 h^{4} \\
& f\left(x_{i+2}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)(3 h)+\frac{f^{\prime \prime}\left(x_{i}\right)(3 h)^{2}}{2}+\frac{f^{\prime \prime \prime}\left(x_{i}\right)(3 h)^{3}}{6}+O h^{4} \\
& f\left(x_{i-1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)(-2 n)+\frac{f^{\prime \prime}\left(x_{i}\right)(-2 n)^{2}}{2}+\frac{f^{\prime \prime \prime}\left(x_{i}\right)(-2 n)^{3}}{6}+O n^{4} \\
& a\left(f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+\frac{1}{2} f^{\prime \prime}\left(x_{i}\right) h^{2}+\frac{1}{6} f^{\prime \prime}\left(x_{i}\right) h^{3}+0 h^{4}\right) \\
& b\left(f\left(x_{i+2}\right)=f\left(x_{i}\right)+3 f^{\prime}\left(x_{i}\right) h+\frac{9}{2} f^{\prime \prime}\left(x_{i}\right) h^{2}+\frac{27}{6} f^{\prime \prime \prime}\left(x_{i}\right) h^{3}+O h^{4}\right) \\
& 1\left(f\left(x_{i-1}\right)=f\left(x_{i}\right)-2 f^{\prime}\left(x_{i}\right) h+2 f^{\prime \prime}\left(x_{i}\right) h^{2}-\frac{8}{6} f^{\prime \prime \prime}\left(x_{i}\right) h^{3}+O h^{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& a=5 / 4 \quad b=\frac{1}{4} \\
& \frac{5}{4} f\left(x_{i+1}\right)=\frac{5}{4} f\left(x_{i}\right)+\frac{5}{4} f^{\prime}\left(x_{i}\right) h+\frac{5}{8} f^{\prime \prime}\left(x_{i}\right) h^{2}+\frac{5}{24} f^{\prime \prime}\left(x_{i}\right) h^{3}+0 h^{4} \\
& \frac{1}{4} f\left(x_{i+2}\right)=\frac{1}{4} f\left(x_{i}\right)+\frac{3}{4} f^{\prime}\left(x_{i}\right) h+\frac{9}{8} f^{\prime \prime}\left(x_{i}\right) h^{2}+\frac{27}{24} f^{\prime \prime \prime}\left(x_{i}\right) h^{3}+O h^{4} \\
& \frac{f\left(x_{i-1}\right)=f\left(x_{i}\right)-2 f^{\prime}\left(x_{i}\right) h+2 f^{\prime \prime}\left(x_{i}\right) h^{2}-\frac{8}{6} f^{\prime \prime}\left(x_{i}\right) h^{3}+O h^{4}}{f\left(x_{i-1}\right)+\frac{5}{4} f\left(x_{i+1}\right)+\frac{1}{4} f\left(x_{i+2}\right)=\frac{5}{2} f\left(x_{i}\right)+\frac{15}{4} f^{\prime \prime}\left(x_{i}\right) h^{2}+O h^{4}} \\
& \frac{4}{15 h^{2}}\left[f\left(x_{i-1}\right)-\frac{5}{2} f\left(x_{i}\right)+\frac{5}{4} f\left(x_{i+1}\right)+\frac{1}{4} f\left(x_{i+2}\right)=\frac{15 h^{2}}{4} f^{\prime \prime}\left(x_{i}\right)+O h^{4}\right] \\
& f^{\prime \prime}\left(x_{i}\right)=\frac{4}{15 h^{2}} f\left(x_{i-1}\right)-\frac{2}{3 h^{2}} f\left(x_{i}\right)+\frac{1}{3 h^{2}} f\left(x_{i+1}\right)+\frac{1}{15 h^{2}} f\left(x_{i+2}\right)+O h^{2}
\end{aligned}
$$ thus $\quad A=\frac{4}{15 h^{2}} \quad B=\frac{-2}{3 h^{2}} \quad C=\frac{1}{3 h^{2}} \quad D=\frac{1}{15 h^{2}}$

$$
\begin{aligned}
& a\left[f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+\frac{f^{\prime \prime}\left(x_{i}\right) h^{2}}{2}+\frac{f^{\prime \prime \prime}\left(x_{i}\right) h^{3}}{6}+\frac{f^{\prime \prime}\left(x_{i}\right) h^{4}}{24}+\frac{f^{v}\left(x_{i}\right) h^{5}}{120}+0 h^{6}\right] \\
& b\left[f\left(x_{i=2}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)(2 n)+\frac{f^{\prime \prime}\left(x_{i}\right)\left(2 n^{2}\right)^{2}}{2}+\frac{f^{\prime \prime}\left(x_{i}\right)(2 n)^{3}}{6}+\frac{f^{\prime \prime}\left(x_{i}\right)\left(2 n^{4}\right)^{4}}{24}+\frac{f^{\prime \prime}\left(x_{i}\right)(2 n)^{4}}{120}+O h^{2}\right] \\
& c\left[f\left(x_{i+3}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)(34)+\frac{f^{\prime \prime}\left(x_{i}\right)(3 h)^{3}}{2}+\frac{f^{\prime \prime \prime}\left(x_{i}\right)(3 h)^{3}}{6}+\frac{f^{\prime \prime}\left(x_{i}\right)(34)^{4}}{24}+\frac{f^{\prime \prime}\left(x_{i}\right)(3 h)^{5}}{120}+0 h^{6}\right] \\
& \left.d\left[f\left(x_{i-1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)(-h)+f^{\prime \prime}\left(x_{i}\right)(-h)^{2}\right)+\frac{f^{\prime \prime \prime}\left(x_{i}\right)(-h)^{3}}{6}+\frac{f^{\prime \prime}\left(x_{i}\right)(-h)^{4}}{24}+\frac{f^{\prime}\left(x_{i}\right)(-h)^{5}}{120}+0 h^{6}\right] \\
& 1\left\{f\left(x_{i-2}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)(-24)+\frac{f^{\prime \prime}\left(x_{i}\right)(-24)^{2}}{2}+\frac{f^{\prime \prime \prime}\left(x_{i}\right)(-2 i)^{2}}{6}+\frac{f^{\prime \prime}\left(x_{i}\right)(-2 h)^{4}}{24}+\frac{f^{\prime \prime}\left(x_{i}\right)(-24)^{5}}{120}+0 h^{b}\right\} \\
& \frac{a}{2}+\frac{4 b}{2}+\frac{9 c}{2}+\frac{d}{2}+\frac{4}{2}=0 \\
& \frac{a}{6}+\frac{8 b}{6}+\frac{27 c}{6}-\frac{d}{6}-\frac{8}{6}=0 \\
& \frac{a}{24}+\frac{16 b}{24}+\frac{81 c}{24}+\frac{d}{24}+\frac{16}{24}=0 \\
& \frac{a}{120}+\frac{32 b}{120}+\frac{243 c}{120}-\frac{d}{120}-\frac{32}{120}=0 \\
& {\left[\begin{array}{cccc|c}
1 / 2 & 2 & 9 / 2 & 1 / 2 & -2 \\
1 / 6 & 4 / 3 & 9 / 2 & -1 / 6 & 4 / 3 \\
1 / 24 & 16 / 24 & 81 / 24 & 1 / 24 & -16 / 24 \\
1 / 120 & 32 / 120 & 243 / 120 & -1 / 120 & 32 / 120
\end{array}\right] \overrightarrow{\text { pREF }}\left[\begin{array}{llll|l}
1 & 0 & 0 & 0 & 20 \\
0 & 1 & 0 & 0 & -5 \\
0 & 0 & 1 & 0 & 2 / 3 \\
0 & 0 & 0 & 1 & -10
\end{array}\right]} \\
& a=20 \quad b=-5 \quad c=\frac{2}{3} \quad d=-10
\end{aligned}
$$

Prob 3 continued

$$
\begin{aligned}
& 20\left[f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+\frac{1}{2} f^{\prime \prime}\left(x_{i}\right) h^{2}+\frac{1}{6} f^{\prime \prime \prime}\left(x_{i}\right) h^{3}+\frac{1}{24} f^{\prime \prime \prime}\left(x_{i}\right) h^{4}+\frac{1}{120} f^{v}\left(x_{i}\right) h^{5}+0 h^{6}\right] \\
& -5\left[f\left(x_{i+2}\right)=f\left(x_{i}\right)+2 f^{\prime}\left(x_{i}\right) h+2 f^{\prime \prime}\left(x_{i}\right) h^{2}+\frac{8}{6} f^{\prime \prime \prime}\left(x_{i}\right) h^{3}+\frac{16}{24} f^{\prime \prime}\left(x_{i}\right) h^{4}+\frac{32}{120} f^{2}\left(x_{i}\right) h^{5}+O h^{b}\right] \\
& 2 / 3\left[f\left(x_{i+3}\right)=f\left(x_{i}\right)+3 f^{\prime}\left(x_{i}\right) h+\frac{9}{2} f^{\prime \prime}\left(x_{i}\right) h^{2}+\frac{27}{6} f^{\prime \prime}\left(x_{i}\right) h^{3}+\frac{81}{24} f^{\prime \prime}\left(x_{i}\right) h^{4}+\frac{243}{120} f^{\prime}\left(x_{i}\right) h^{5}+0 h^{6}\right] \\
& -10\left[f\left(x_{i-1}\right)=f\left(x_{i}\right)-f^{\prime}\left(x_{i}\right) h+\frac{1}{2} f^{\prime \prime}\left(x_{i}\right) h^{2}-\frac{1}{6} f^{\prime \prime \prime}\left(x_{i}\right) h^{3}+\frac{1}{24} f^{\prime v}\left(x_{i}\right) h^{4}-\frac{1}{12} \circ f^{\prime \prime}\left(x_{i}\right) h^{5}+0 h^{6}\right] \\
& 1\left[f\left(x_{i-2}\right)=f\left(x_{i}\right)-2 f^{\prime}\left(x_{i}\right) h+\frac{4}{2} f^{\prime \prime}\left(x_{i}\right) h^{2}-\frac{8}{6} f^{\prime \prime}\left(x_{i}\right) h^{3}+\frac{16}{24} f^{10}\left(x_{i}\right) h^{4}-\frac{3^{2}}{120} f^{2}\left(x_{i}\right) h^{5}+O h^{6}\right. \\
& 20 f\left(x_{i+1}\right)=20 f\left(x_{i}\right)+20 f^{\prime}\left(x_{i}\right) h+10 f^{\prime \prime}\left(x_{i}\right) h^{2}+\frac{20}{6} f^{\prime \prime}\left(x_{i}\right) h^{3}+\frac{20}{24} f^{11}\left(x_{i}\right) h^{4}+\frac{20}{120} f^{\prime \prime}\left(x_{i}\right) h^{5}+02^{6} \\
& \left.-5 f\left(x_{i}+2\right)=-5 f\left(x_{i}\right)-10 f^{2}\left(x_{i}\right) h-10 f^{\prime \prime}\left(x_{i}\right) h^{2}-\frac{40}{6} f^{\prime \prime}\left(x_{i}\right)\right)^{3}-\frac{80}{24} f^{10}\left(x_{i}\right) h^{4}-\frac{100}{120} f^{2}\left(x_{i}\right) h^{5}+0 h^{6} \\
& \frac{2}{3} f\left(x_{i+3}\right)=\frac{2}{3} f\left(x_{i}\right)+2 f^{\prime}\left(x_{i}\right) h+3 f^{\prime \prime}\left(x_{i}\right) h^{2}+3 f^{\prime \prime \prime}\left(x_{i}\right) h^{3}+\frac{9}{4} f^{\prime \prime}\left(x_{i}\right) h^{4}+\frac{27}{20} f^{\prime}\left(x_{i}\right) h^{5}+0 h^{6} \\
& -10 f\left(x_{i-1}\right)=-10 f\left(x_{i}\right)+10 f^{\prime}\left(x_{i}\right) h-5 f^{\prime \prime}\left(x_{i}\right) h^{2}+\frac{10}{6} f^{\prime \prime}\left(x_{i}\right) h^{3}-\frac{10}{24} f^{10}\left(x_{i}\right) h^{4}+\frac{10}{120} f^{-1}\left(x_{i}\right) h^{5}+0 h^{6} \\
& f\left(x_{i-2}\right)=f\left(x_{i}\right)-2 f^{\prime}\left(x_{i}\right) h+2 f^{\prime \prime}\left(x_{i}\right) h^{2}-\frac{8}{6} f^{\prime \prime}\left(x_{i}\right) h^{3}+\frac{16}{24} f^{\prime 1}\left(x_{i}\right) h^{4}-\frac{32}{120} f^{2}\left(x_{i}\right) h^{5}+0 h^{6} \\
& f\left(x_{i-2}\right)-10 f\left(x_{i-1}\right)+20 f\left(x_{i+1}\right)-5 f\left(x_{i+2}\right)+\frac{2}{3} f\left(x_{i+3}\right)=\frac{20}{3} f\left(x_{i}\right)+20 f^{\prime}\left(x_{i}\right) h+O h^{6} \\
& \frac{1}{20 n}\left(f\left(x_{i-2}\right)-10 f\left(x_{i-1}\right)-\frac{20}{3} f\left(x_{i}\right)+20 f\left(x_{i+1}\right)-5 f\left(x_{i+2}\right)+\frac{2}{3} f\left(x_{i+3}\right)+0 h^{b}=20 f^{\prime}\left(x_{i}\right) h\right) \\
& f^{\prime}\left(x_{i}\right)=\frac{1}{20 h} f\left(x_{i-2}\right)-\frac{1}{2 h} f\left(x_{i-1}\right)-\frac{1}{3 n} f\left(x_{i}\right)+\frac{f\left(x_{i+1}\right)}{n}-\frac{1}{4 n} f\left(x_{i+2}\right)+\frac{1}{30 n} f\left(x_{i+3}\right)+0 h^{5}
\end{aligned}
$$

So $A=\frac{1}{20 h} \quad B=-\frac{1}{2 h} \quad C=-\frac{1}{3 h} \quad D=\frac{1}{h}$

$$
E=-\frac{1}{4 h} \quad F=\frac{1}{30 h}
$$

