MAE384 Fall 2011 HW5

In all problems, the argument of a sinusoidal function is always in radian. For Prob 1, 3, and 4, please submit the computer codes that produce your numerical solutions.

1. Evaluate the following integral,

$$
I=\int_{0}^{6} e^{x} \cos \left(e^{x}\right) d x
$$

using the composite Simpson's $3 / 8$ method for the three cases with $h=0.1,0.01$, and 0.001 . Compare the results with the analytic solution. [2 points]
2. An integral is defined by

$$
I=\int_{0}^{4}\left(3 x^{4}+5 x^{3}-7 x+3\right) d x
$$

First, evaluate it analytically. Then, evaluate it using Gauss quadrature by the following procedure:
(i) Transform the integral to the standard form, $I=\int_{-1}^{1} f(X) d X$, where $X=x / 2-1$. (ii) Use the 3-point Gauss quadrature in Table 7-1 to perform the numerical integration. Compare the result with the analytic solution. [0.5 point]
3. (a) Solve the following initial value problem,

$$
\frac{d u}{d x}=x e^{-u}-1, u(0)=0
$$

using the classical 3rd order Runge-Kutta method with $h=0.1$. Find the solution $u(x)$ for the interval of $0 \leq x \leq 4$. Also, solve it analytically, then compare the numerical and analytic solutions by plotting them together. Beware that the first term in the right hand side is $x \exp (-u)$, not $x \exp (-x)$. [$\mathbf{2 . 5}$ points]
(b) Same as (a) but use the Euler's implicit method with $h=0.1$ to find the numerical solution for $0 \leq x \leq 4$. Compare the numerical and analytic solutions by plotting them in a single figure. [2.5 points]
4. Solve the initial value problem,

$$
\frac{d^{2} u}{d x^{2}}+2 \frac{d u}{d x}-3 u=0
$$

with the initial conditions: (I) $u(0)=3$, (II) $u^{\prime}(0)=-1 \quad\left(u^{\prime}\right.$ is $\left.d u / d x\right)$,
using the following methods: (i) Use the 3-point central difference scheme (9th formula from top in p .260) to represent $u^{\prime \prime}$ in the ODE. (ii) Use the 2-point forward difference scheme (1st formula in Table 6-1 in p . 259) to represent u^{\prime} in the ODE and the 2 nd initial condition. Find the numerical solution for the interval, $0 \leq x \leq 2$, for the two cases: $h=0.1$ and $h=0.05$. (In each case, use the same h in (i) and (ii)). Find the analytic solution and compare the numerical and analytic solutions. [2.5 points]

