Prob 1 Solution (Thanks to Kenneth Frazier)

```
clc
clear
r=quad('exp(x).*Cos(exp(x))',0,6); %analytic solution
fprintf(' solution for problem 1 using simpson 3/8')
fprintf('\r h I actual relative error \r')
for h=[.1,.01,.001]
    h1=1*h;
    h2 =2*h;
    h3=3*h;
    a=0;b=6;
    N=(b-a)/h;
    fa=exp(a).*cos(exp (a));
    fb=exp (b).* cos (exp (b));
    t1=0;
for i=1:3:(N-1)
    x1=h1;
    h1=x1+3*h;
    f1=(exp(x1).* cos(exp (x1)));
    t1=t1+f1;
end
t2=0;
for i=2:3:(N-1)
    x2=h2;
        h2=x2+3*h;
        f2=(exp (x2).*\operatorname{cos (exp (x2)));}
        t2=t2+f2;
end
t3=0;
for i=3:3:((N-2))
    x3=h3;
    h3 =x3+3*h;
    f3=(exp (x3).*\operatorname{cos}(\operatorname{exp}(x3)));
    t3=t3+f3;
end
I=(3/8)*h*(fa + 3*(t1) + 3*(t2) + 2*(t3) + fb);
e=((r-I)/r);
fprintf('\r %9.6f %9.6f %9.6f %9.6f \r',h , I, r ,e)
end
```

Results:
solution for problem 1 using Simpson 3/8

h	I	actual	relative error
0.100000	40.049052	0.123396	-323.556813
0.010000	1.254602	0.123396	-9.167273
0.001000	0.123726	0.123396	-0.002675

Note: The analytic solution is $I=\sin (\exp (6))-\sin (1)=0.12339 \ldots$

Prob 2 Solution (Thanks to Joe Colin)

$$
\begin{aligned}
I & =\int_{0}^{4}\left(3 x^{4}+5 x^{3}-7 x+3\right) d x \\
& =\left[\frac{3}{5} x^{5}+\frac{5}{4} x^{4}-\frac{7}{2} x^{2}+\left.3 x\right|_{0} ^{4}\right. \\
& =3 / 5(4)^{5}+5 / 4(4)^{4}-\frac{7}{2}(4)^{2}+3(4)=890.4
\end{aligned}
$$

(i) standard form $\Rightarrow I=\int_{-1}^{1} f(X) d X$, where $X=x / 2-1$

$$
\Rightarrow I=\underbrace{}_{f(X)} \begin{aligned}
& \rightarrow x=2 X+2 \\
& \\
& \\
& d x=2 d X \\
& \int_{-1}^{1}\left[3(2 x+2)^{4}+5(2 x+2)^{3}-7(2 x+2)+3\right](2)
\end{aligned} \underbrace{[x}
$$

\Rightarrow Table 7-1

$$
\begin{array}{cl}
\rightarrow I \approx C_{1} f\left(x_{1}\right)+C_{2} f\left(x_{2}\right)+C_{3} f\left(x_{2}\right) \\
C_{1}=0.555556 & x_{1}=-0.77459667 \\
C_{2}=0.888889 & x_{2}=0 \\
C_{5}=0.5555556 & x_{3}=0.77459667 \\
\Rightarrow I \approx 880.400063208 & \\
\Rightarrow 7.098 \times 10^{-6} \% \text { error } &
\end{array}
$$

Prob 3 Solution - next 3 pages (Thanks to Joe Conlin)

Analytic solution:

$$
\begin{aligned}
& \frac{d v}{d x}=x e^{-0}-1 \quad, u(0)=0 \\
& \Rightarrow \frac{d u}{d x}+1=x e^{-v} \\
& \Rightarrow \frac{d u^{*}}{d x}=x e^{-x} e^{-u^{*}} \\
& \rightarrow U^{*}=U+X \\
& \rightarrow x e^{-0}=f(x) e^{-(0+x)} \\
& f(x)=\frac{x e^{-v}}{e^{-(u+x)}}=\frac{x}{e^{-x}}=x e^{x} \\
& \Rightarrow \int \frac{d u^{*}}{e^{-u^{*}}}=\int x e^{x} d x \Rightarrow \int e^{u^{*}} d u^{*}=\int x e^{x} d x ; \begin{array}{ll}
u=x & d u=1 d x \\
d v=e^{x} d x & v=e^{x}
\end{array} \\
& \Rightarrow \ln \left(e^{c^{x}}=\ln \left(x e^{x}-e^{x}+c\right)\right. \\
& u^{*}=h\left(x e^{x}-e^{x}+c\right) \\
& u=\ln \left(x^{x} e^{x}-e^{x}+c\right)-x \\
& \begin{aligned}
\rightarrow i_{0} c_{2} \Rightarrow U(0) & =\operatorname{h}\left(-0 e^{0}-e^{0}+C\right)-0=0 \\
c & =2
\end{aligned} \\
& u(x)=\ln \left[e^{x}(x-1)+2\right]-x
\end{aligned}
$$

Prob 3(a) numerical solution

```
Problem 3
Part (a)
f = inline('x*exp(-u)-1','x','u');
xi = 0:.1:4;
ui = log(exp(xi).*(xi-1)+2)-xi;
plot(xi,ui,'k')
hold on
u = 0;
x = 0;
plot(u,x,'ro')
h = 0.1;
for i = 1:h:5-h
    k1 = f(x,u);
    k2 = f(x+h/2,u+k1*h/2);
    k3 = f(x+h,u-k1*h+2*k2*h);
    u = u+(1/6)*(k1+4*k2+k3)*h;
    x = x+h;
    plot(x,u,'ro')
end
axis([[0 4 -. 4 1.2])
title('3rd Order Runge-Kutta Method')
xlabel('x')
ylabel('u(x)')
legend('Analytic','R-K Method',2)
```


Prob 3(b) numerical solution

```
Problem 3
Part (b)
MATLAB Code:
hold on
f = inline('x*exp(-u)-1','***,'u');
xi = 0:.1:4;
ui = log(exp(xi).*(xi-1)+2)-xi;
plot(xi,ui,'k')
u0 = 0;
x0 = 0;
plot(u0,x0,'ro')
h = 0.1;
for i = 1:1:40
    x = h*i;
    u = u0-(u0-u0+(1-x* exp (-u0))*h)/(1+x* exp (-u0)*h);
    u0 = u;
    plot(x,u,'ro')
end
title('Eulars Implicit Method')
xlabel('x')
ylabel('u(x)')
legend('Analytic','Eulers',2)
```


Note: The above matlab code used Newton's method to find the solution of the nonlinear equation at every step. There are other methods (fixed point iteration, etc.) that may also work. The accuracy of the solution would somewhat depend on the detail of the iterative process. Grading for this problem was based on both the accuracy of the solution and the correctness of the procedure.

Prob 4 Solution (Thanks to Taylin Dean)

The analytic solution is $u(x)=\exp (-3 x)+2 \exp (x)$. The finite difference formula to use is

$$
\frac{u_{i-1}-2 u_{i}+u_{i+1}}{h^{2}}+\frac{2 u_{i+1}-2 u_{i}}{h}-3 u_{i}=0 \quad, i=1,2, \ldots, \mathrm{~N}
$$

with the initial conditions $u_{0}=3$ and $u_{1}=u_{0}-h$.

```
clear all
close all
clc
hold on
a = 0;
b = 2;
h = 0.1;
for j = 1:2
    x = a:h:b;
    N = (b-a)/h;
    U(1) = 3;
    U(2) =U(1)-h;
    A = exp (-3.*x)+2.* exp (x);
    for i = 2:N
            Num = ((3*h^2)+(2*h)+2).*U(i)-U(i-1);
            Den = 1+(2*h);
            U(i+1)= Num./Den;
    end
    if j == 1
        plot (x,A)
        plot(x,U,'r--')
        h = h/2;
    end
end
```


