MAE384 Fall 2011 Homework \#6

1. Solve the boundary value problem,

$$
\begin{aligned}
& \frac{d^{2} u}{d x^{2}}+x^{2} u=0 \\
& u(0)=1, \quad u^{\prime}(5)=0.5
\end{aligned}
$$

for $u(x)$ within the domain of $0 \leq x \leq 5$. Use the 3-point central difference scheme (9th formula from top in p . 260) to represent $u^{\prime \prime}$ in the differential equation and 2-point backward finite difference scheme (1 st formula in p .260) to represent the u^{\prime} in the second boundary condition. Choose $h=0.1$. Plot your solution. (4 points)
2. (a) Solve the partial differential equation,

$$
\frac{\partial u}{\partial t}=A \frac{\partial u}{\partial x}
$$

defined on the semi-infinite domain, $-\infty<x<\infty$ and $0 \leq t<\infty$, with the boundary condition given at $t=0$ as

$$
\begin{aligned}
u(x, 0) & =1 \quad, & \text { if } 0 \leq x \leq 1 \\
& =0 & , \text { otherwise } .
\end{aligned}
$$

Use the 2-point forward difference scheme (1st formula in Table 6-1 in p. 259) to represent $\partial u / \partial t$ and 2-point backward difference scheme (1st formula in p. 260) to represent $\partial u / \partial x$.
Choose $A=-0.6, \Delta x=0.1$ and $\Delta t=0.1$. Integrate your system forward in t to find the solution, $u(x, t)$, at $t=0.5,1$, and 2 . Plot these solutions (as a function of x) along with the "initial" state, $u(x, 0)$, for the domain of $0 \leq x \leq 5$. (Note: Your solution could be non-zero outside this domain. In that case, you only need to plot the result for $0 \leq x \leq 5$.)
(b) Using the same finite difference scheme and the same Δx and Δt in (a), explore the behavior of the numerical solutions for the cases with $A=-1.2$ and $A=0.6$. You do not have to integrate the system to $t=2$. Integrating it for a few time steps (for example, to $t=0.5$) would suffice to reveal the behavior of those solutions. Explain why the behavior of the solutions for these two cases differ from the case with $A=-0.6$ in Part (a). (3 points)
3. Find the general solution of the following PDEs by the method of separation of variables.

(1 point)

(a) $\frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial u}{\partial y}+u=0$
(b) $y \frac{\partial u}{\partial x}+x^{2} \frac{\partial u}{\partial y}=0$

