MAE384 Fall 2012 Homework \#1

1 point $=1 \%$ of your total score for the semester
Unless otherwise noted, in all homework and exams the argument of a sinusoidal function is in radian

1. (a) Under the IEEE-754 standard in Sec 1.2, what is the following 64-bit (double precision) binary number when it is restored to its decimal representation? Hint: Remember to take into account the "bias" in the exponent. You might find the example in Fig. 1-7 useful.

(b) Under the IEEE-754 standard, the smallest positive 64-bit binary number that's allowed by the system is $2^{-1023} \sim 1.1 \times 10^{-308}$. We have found in class that a much smaller number is allowed in Matlab (therefore it is likely that Matlab adopted a different standard for its 64-bit variables). Try to search for the smallest positive number that's allowed, i.e., the threshold for underflow, in Matlab. Explain how you find that number. [1 point]
2. (a) Find the positive solution of the equation

$$
\sin (x)=0.25 x
$$

using the Bisection method with $[2,3]$ chosen as the initial interval. The solution will be considered satisfactory if its uncertainty (numerical error) is within ± 0.02. Show your procedure or Matlab code. [1 point]
3. (a) Given $f(x) \equiv \cos (x)+0.1 x^{2}-0.5$, find all solutions of $f(x)=0$ within the interval of $0<x<4$ by Newton's method. Show your procedure or Matlab code. A numerical solution, x_{N}, will be considered satisfactory if $\left|x_{\mathrm{N}}-x_{\mathrm{N}-1}\right|<0.01$, where x_{N} is the solution after the N -th iteration. (The initial guess is x_{0}.) (b) Discuss how the choice of the initial guess affects the solution. Try to systematically explore the interval of $0<x_{0}<4$. Hint: You might find the behavior of the solution more interesting when x_{0} is located near the point where $f^{\prime}(x)=0$ [3 points]

