MAE384 Fall 2012 HW1 Solutions

Prob 1 (prepared by HPH)

(a) The answer is $1.84375 \times 2^{19} = 966656$

(b) The smallest positive number allowed in Matlab is $2^{(-1074)}$, or 4.940656458412465e-324. Matlab will underflow (return "0") if an operation leads to a number that is less than or equal to $2^{(-1075)}$. Note that $2^{(-1074)}$ is the "resolution" of the 64-bit system in Matlab. There is literally nothing between 2(-1074) and $2^{(-1075)}$. Thus, if you enter $2^{(-1074.99)}$ (as some of you did) Matlab would still give you the same number as $2^{(-1074)}$, or 4.940656458412465e-324.

Prob 2 (prepared by HPH)

The numerical solution is $X_{NS} = 2.484375 \pm 0.015625$. We obtain it after the interval has been narrowed down to [2.46875, 2.5]. If we pick the mid-point of that interval as the solution, $X_{NS} = (2.46875+2.5)/2 = 2.484375$, the numerical error is guaranteed to be within $\pm |(2.5 - 2.46875)/2| = \pm 0.015625$. (If this is not clear to you, it's useful to read the discussion related to Eq. (3.6) and (3.7) in textbook.)

Prob 2 An example of solution by hand (Thanks to Nolan Cheshire)

Prob 3a (Prepared by HPH) The solutions within (0, 4) are X = 1.20918 and 3.68343. See Part (b) for detail.

Prob 3a An example of solution by hand (Thanks to Nolan Cheshire)

3. a.)
$$f(x) = cos(x) + 0.1x^{2} - 0.5$$
 $0 \le x \le 4$
 $f'(x) = -sin(x) + 0.2x$ $f(x) = 0$
 $x_{o} = 1$
 $x_{i} = 1 - cos(i) + 0.1 - 0.5 = 1.219$
 $x_{i} = 1 - cos(i) + 0.1 - 0.5 = 1.219$
 $x_{i} = 1.219 - cos(1.219) + 0.1(1.219)^{2} - 0.5 = 1.20919$
 $x_{i} = 1.209 - cos(1.209) + 0.1(1.209)^{2} - 0.5 = 1.20919$
 $y_{i} = 1.209 - cos(1.209) + 0.1(1.209)^{2} - 0.5 = 1.20918$
 $-sin(1.209) + 0.2(1.209)$
 $x_{o} = 3$
 $x_{i} = 3 - cos(3) + 0.1(3)^{2} - 0.5 = 4.286$
 $-sin(3) + 0.2(3)$
 $x_{i} = 4.286 - cos(4.286) + 0.1(4.286)^{2} - 0.5 = 3.764$
 $-sin(4.286) + 0.2(4.286)$
 $x_{i} = 3.764 - cos(3.764) + 0.1(5.764)^{2} - 0.5 = 3.686$
 $-sin(3.764) + 0.2(3.764)$
 $x_{i} = 3.686 - cos(3.686) + 0.1(3.686)^{2} - 0.5 = 3.686$
 $-sin(3.764) + 0.2(3.764)$
 $x_{i} = 3.686 - cos(3.686) + 0.1(3.686)^{2} - 0.5 = 3.686$
 $-sin(3.764) + 0.2(3.764)$

Prob 3b (Prepared by HPH. This discussion also synthesizes the insights from the solutions of many students. Thanks especially to Joel Richardson, Daniel Miskin, Joseph Williams, Roaldi Joco, Jonathan Lai, and Ali Alnazawi. Apology to anyone who is left out.)

We use the following Matlab program to "scan" the solution when the initial guess is systematically varied from 0.01 to 4, step 0.01:

```
f = inline('cos(x)+0.1*x^2-0.5','x');
fprime = inline('-sin(x)+0.2*x','x');
for k = 1:400
    x0 = k*0.01;
    x00 = x0;
    for iter = 1:100
        x1 = x0 - f(x0)/fprime(x0);
        x0 = x1;
    end
    fprintf('initial guess = %8.5f solution = %8.5f \r',x00,x1)
    xplot(k) = x00; splot(k) = x1;
end
plot(xplot,splot)
xlabel('INITIAL GUESS'); ylabel('SOLUTION')
```

The result is presented as a plot of the initial guess vs. final solution:

There are 4 solutions for the equation: 1.20918, 3.68343, -1.20918, and -3.68343 (the first two are the positive solutions for Part (a)). The majority of the initial guesses from [0, 4] converge to either 1.20918 or 3.68343. However, when the initial guess is close to where f'(x) = 0, the behavior of convergence becomes very complicated. Some initial guesses converge to the negative solutions. For a quick check, the plot in the next page shows where f'(x) = 0 (the black and red curves are f(x) and f'(x)).

The matlab program in the preceding page also gives us a print out of the solutions, as detailed below. The list is truncated to focus on the most interesting sub-intervals, and the two negative solutions are colored in red and blue:

initial guess = 0.01000	solution = 3.68343
initial guess = 0.02000	solution = 3.68343
initial guess = 0.03000	solution = -1.20918
initial guess = 0.04000	solution = -1.20918
initial guess = 0.05000	solution = 3.68343
initial guess = 0.06000	solution = -1.20918
initial guess = 0.07000	solution = 3.68343
initial guess = 0.08000	solution = -1.20918
initial guess = 0.09000	solution = -1.20918
initial guess = 0.10000	solution = -1.20918
initial guess = 0.11000	solution = 3.68343
initial guess = 0.12000	solution = 3.68343
•••	\leftarrow All 3.68343 within this range
initial guess = 0.22000	solution = 3.68343
initial guess = 0.23000	solution = 3.68343
initial guess = 0.24000	solution = 1.20918
initial guess = 0.25000	solution = 3.68343
initial guess = 0.26000	solution = -3.68343
initial guess = 0.27000	solution = -3.68343
initial guess = 0.28000	solution = -1.20918
initial guess = 0.29000	solution = -3.68343
initial guess = 0.30000	solution = 1.20918
initial guess = 0.31000	solution = 1.20918
•••	\leftarrow All 1.20918 within this range
initial guess = 2.25000	solution = 1.20918
initial guess = 2.26000	solution = 1.20918
initial guess = 2.27000	solution = -1.20918
initial guess = 2.28000	solution = 3.68343
initial guess = 2.29000	solution = 3.68343
initial guess = 2.30000	solution = 3.68343

initial guess = 2.3	31000	solution = -3.68343	
initial guess = 2.3	32000	solution = 1.20918	
initial guess = 2.3	33000	solution = -3.68343	
initial guess = 2.3	34000	solution = 1.20918	
initial guess = 2.3	35000	solution = -1.20918	
initial guess = 2.3	36000	solution = -1.20918	
initial guess = 2.3	37000	solution = -1.20918	
initial guess = 2.3	38000	solution = -1.20918	
initial guess = 2.3	39000	solution = -1.20918	
initial guess = 2.4	40000	solution = -1.20918	
initial guess = 2.4	41000	solution = -1.20918	
initial guess = 2.4	42000	solution = -1.20918	
initial guess = 2.4	43000	solution = -1.20918	
initial guess = 24	44000	solution $= -1.20918$	
initial guess = 2.4	45000	solution $= -1.20918$	
initial guess = 2.4	46000	solution = 1.20918	
initial guess = 2.4	17000	solution $= -3.68343$	
initial guess = 2.4	18000	solution $= -3.68343$	
initial guess = $2/$	19000	solution = $-3.683/13$	
initial guess = 2.5	50000	solution = -3.683/3	
initial guess = 2.5	51000	solution = 3.68343	
initial guess $= 2.5$	52000	solution = -3.68343	
initial guess $= 2.5$	52000	solution = 1.20018	
initial guess $= 2.5$	54000	solution = 3.68242	
initial guess $= 2.5$	55000	solution = 1.20018	
initial guess $= 2.3$	56000	solution = 1.20918	
initial guess $= 2.3$	50000	solution = 2.69242	
initial guess -2.3	57000	solution = 1.20018	
initial guess $= 2.3$	50000	solution = 1.20918	
initial guess $= 2.3$	59000	solution = 2.69242	
initial guess $= 2.6$	50000	solution = 1.20018	
initial guess $= 2.0$	2000	solution = 1.20918	
initial guess -2.6	52000	solution = 3.08343	
initial guess = 2.6	53000	solution = 3.68343	
initial guess = 2.6	54000	solution = -1.20918	
initial guess = 2.6	55000	solution = 3.68343	
initial guess = 2.6	56000	solution = 3.68343	
initial guess = 2.6	5/000	solution = -1.20918	
initial guess = 2.6	58000	solution = 1.20918	
initial guess = 2.6	59000	solution = 3.68343	
initial guess = 2.7	70000	solution = 3.68343	
initial guess = 2.7	71000	solution = -1.20918	
initial guess = 2.7	72000	solution = 1.20918	
initial guess = 2.7	73000	solution = -1.20918	
initial guess = 2.7	74000	solution = 1.20918	
initial guess = 2.7	75000	solution = 1.20918	
initial guess = 2.7	76000	solution = 1.20918	
initial guess = 2.7	77000	solution = 3.68343	
initial guess = 2.7	78000	solution = 3.68343	
•••		<i>←</i>	All 3.68343 within this range
initial guess = 3.9	99000	solution = 3.68343	
initial guess = 4.0	00000	solution = 3.68343	