MAE384 Fall 2012 Homework \#2

1. Using the Fixed-point iteration method, find all solutions for the equation,

$$
1-x^{3}+2 \sin (x)-\frac{1}{x}=0
$$

For each solution you obtain, please clearly describe your choice of the " $g(x)$ " used in the iterative formula " $\mathrm{x}=\mathrm{g}(\mathrm{x})$ ", and the corresponding initial guess to start the iteration. No credit will be given without this information even if your solution appears to be correct. (Hint: There are total of two solutions.) [3 points]
2. A system of linear equations is given as

$$
\begin{align*}
4 x_{1}+2 x_{2}+x_{3} & =10 \\
3 x_{1}+5 x_{2}+0.5 x_{3} & =14 \tag{1}\\
x_{1}+0.5 x_{2}+3 x_{3} & =8 .
\end{align*}
$$

(a) Solve the system by Gauss-Jordan elimination. Show your procedure. Save the outcome of this part as the "exact" solution, \boldsymbol{x}_{S}.
(b) Solve the system by the Jacobi iterative method, using $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,0)$ as the initial guess and perform 5 iterations. Here, one iteration means updating all x_{1}, x_{2}, and x_{3} once.
(c) Solve the system by the Gauss-Seidel iterative method, using $\left(x_{2}, x_{3}\right)=(0,0)$ as the initial guess. Perform 5 iterations. Again, one iteration means updating all x_{1}, x_{2}, and x_{3} once (see Example 4-8 in textbook).
(d) From the outcome of (b) and (c), calculate and plot the numerical error as a function of the number of iteration for both Jacobi and Gauss-Seidel methods. The error is defined using the Euclidean 2-norm (see Eq. 4.72) as

$$
E \equiv\left\|\boldsymbol{x}_{\boldsymbol{N}}-\boldsymbol{x}_{\boldsymbol{S}}\right\| \equiv \sqrt{\left(x_{N, 1}-x_{S, 1}\right)^{2}+\left(x_{N, 2}-x_{S, 2}\right)^{2}+\left(x_{N, 3}-x_{S, 3}\right)^{2}}
$$

where $\boldsymbol{x}_{N} \equiv\left(x_{N, 1}, x_{N, 2}, x_{N, 3}\right)$ is the numerical solution from the iterative method and $\boldsymbol{x}_{\boldsymbol{S}} \equiv\left(x_{S, 1}, x_{S, 2}, x_{S, 3}\right)$ is the "exact" solution obtained by Gauss-Jordan elimination from Part (a). Comment on your result.
(e) Equation (1) can be written in matrix form as

$$
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}
$$

where

$$
\boldsymbol{A} \equiv\left(\begin{array}{ccc}
4 & 2 & 1 \\
3 & 5 & 0.5 \\
1 & 0.5 & 3
\end{array}\right), \quad \boldsymbol{x} \equiv\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right), \text { and } \quad \boldsymbol{b} \equiv\left(\begin{array}{c}
10 \\
14 \\
8
\end{array}\right)
$$

Using the Euclidean norm for matrix (Eq. 4.76 in textbook), evaluate the condition number for the system in Eq. (1). Is this system ill-conditioned? [5 points]

