MAE384 Fall 2012 Homework \#4

In all problems, the argument of a sinusoidal function is always in radian.

1. Evaluate the first derivative of the function, $f(x)=\cos \left(x^{3}\right)$, for the interval $0 \leq x \leq 3$. First, find $f^{\prime}(x)$ analytically to prepare for later discussions.
(a) Evaluate $f^{\prime}(x)$ at the discrete points of $x=0,0.1,0.2, \ldots, 2.9,3.0$ by setting $h=0.1$ and using the following two formulas: (i) The 2-point forward difference scheme (1st formula in Table 6-1 in p. 259), and (ii) The 3-point forward difference scheme (2nd formula in Table 6-1 in p. 259). Plot the numerical results and analytic solution (total of 3 curves) in a single figure.
(b) Repeat (a) but now set $h=0.01$ and evaluate $f^{\prime}(x)$ at $x=0,0.01,0.02, \ldots, 2.99,3.0$.
(c) Discuss the results in (a) and (b). [4 points]
2. Consider the non-uniform grid (shown in the diagram below) with $\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}-1}=3 h$ and $\mathrm{x}_{\mathrm{i}+1}-\mathrm{x}_{\mathrm{i}}=h$. Derive a 3-point finite difference formula for the first derivative of $f(x)$ at $x_{x}=x_{i}$ that has a truncation error of $\mathrm{O}\left(h^{2}\right)$. Your formula should have the form:

$$
f^{\prime}\left(x_{i}\right)=A f\left(x_{i-1}\right)+B f\left(x_{i}\right)+C f\left(x_{i+1}\right)+O\left(h^{2}\right) .
$$

Please clearly describe what your A, B, and C are in the final answer. [2 points]

3. All of the formula in Table 6-1 have a truncation error of $O(h), O\left(h^{2}\right)$, or $O\left(h^{4}\right)$. Try to derive a fivepoint finite difference formula for the second derivative of $f(x)$ at $\mathrm{x}=\mathrm{x}_{\mathrm{i}}$ that has a truncation error of $O\left(h^{3}\right)$. Moreover, the formula must have the following form:

$$
f^{\prime \prime}\left(x_{i}\right)=A f\left(x_{i-1}\right)+B f\left(x_{i}\right)+C f\left(x_{i+1}\right)+D f\left(x_{i+2}\right)+E f\left(x_{i+3}\right)+O\left(h^{3}\right) .
$$

In other words, the five points must include x_{i} itself, one point to its left, and three points to its right. The spacing between two adjacent grid points is $h=$ constant. After solving the problem, clearly state what your A, B, C, D, and E are. [4 points]

