In all problems, the argument of a sinusoidal function is in radian.
Unless you solve the problem(s) by hand, please submit the computer codes that produce your numerical solutions.

1. Evaluate the following integral,

$$
I=\int_{0}^{6} e^{x} \sin \left(e^{x}\right) d x
$$

using (a) the Trapezoidal method with $h=0.01$ and 0.001 , and (b) the composite Simpson's $3 / 8$ method with h $=0.01$, and 0.001 . Compare the four values obtained by numerical integration with the analytic solution.
[2 points]
3. (a) Solve the following initial value problem,

$$
\frac{d u}{d x}=x^{2} e^{-(u+1)}, u(0)=1
$$

using the classical 4rd order Runge-Kutta method with $h=0.3$. Find the solution $u(x)$ for the interval of $0 \leq x \leq 3$. Also, solve the initial value problem analytically, then compare the numerical and analytic solutions by plotting them together. [3 points]
(b) Same as (a) but use Euler's explicit method with $h=0.3$ to find the numerical solution for $0 \leq x \leq 3$. Compare the numerical and analytic solutions by plotting them in a single figure. [2 points]
4. Solve the initial value problem,

$$
\frac{d^{2} u}{d x^{2}}+5 \frac{d u}{d x}+6 u=0
$$

with the initial condition: (I) $u(0)=2$, (II) $u^{\prime}(0)=-5 \quad\left(u^{\prime}\right.$ is $\left.d u / d x\right)$,
using the following method: (i) The 3-point central difference scheme (9th formula from top in p. 260) is used to represent $u^{\prime \prime}$ in the ODE. (ii) The 2-point forward difference scheme (1st formula in Table 6-1 in p. 259) is used to represent u^{\prime} in the ODE and in the 2nd initial condition. Find the numerical solution for the interval, $0 \leq x \leq 1.5$, for the two cases: $h=0.1$ and $h=0.05$. (In each case, use the same h in (i) and (ii)). Find the analytic solution and compare it with the numerical solutions. [2 points]

