MAE384 Fall 2012 Homework \#6

1. Solve the boundary value problem,

$$
\begin{aligned}
& \frac{d^{2} u}{d x^{2}}+(15+8 x) u=0 \\
& u^{\prime}(0)=0.5, u(1)=0.3
\end{aligned}
$$

for $u(x)$ over the interval of $0 \leq x \leq 1$. Use the 3-point central difference scheme (9th formula from top in p. 260) to represent $u^{\prime \prime}$ in the differential equation and 2-point forward finite difference scheme (1st formula in Table 6-1 in p. 259) to represent the u^{\prime} in the first boundary condition. Choose $h=0.1$. Plot your solution. (4 points)
2. (a) Solve the partial differential equation,

$$
\frac{\partial u}{\partial t}=0.5 \frac{\partial u}{\partial x}-0.4 u
$$

defined on the semi-infinite domain, $-\infty<x<\infty$ and $0 \leq t<\infty$, with the boundary condition given at $t=0$ as

$$
\begin{aligned}
u(x, 0) & =1 \quad, \text { if } 3.5 \leq x \leq 4 \\
& =0,
\end{aligned}, \text { otherwise }
$$

Use the 2-point forward difference scheme (1st formula in Table 6-1 in p. 259) to discretize both $\partial u / \partial t$ and $\partial u / \partial x$. Choose $\Delta x=0.1$ and $\Delta t=0.1$. Integrate your system forward in t to find the solution, $u(x, t)$, at $t=0.5,1$, and 2. Plot these solutions (as a function of x) along with the "initial" state, $u(x, 0)$, over the interval of $0 \leq x \leq 5$. (3 points)
3. Find the general solution of the following PDEs by the method of separation of variables. (2 points)
(a) $\frac{\partial^{2} u}{\partial x \partial y}-x y u=0$
(b) $\quad x y \frac{\partial u}{\partial x}-\frac{\partial u}{\partial y}+y u=0$

