
                                                 MAE384, Spring 2020  Homework #2 

 

The deadline for submission of hard-copy reports will be announced by instructor. Please follow the rules 

on collaboration as given in Homework #1. A statement on collaboration is required for all reports.  

Computer codes used to complete the tasks should be included in the report. 

 

 

Prob 1 (4 points) 

A system of linear equations is given: 
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Symbolically, we write Eq. (1) as 

 

𝑨 �⃑⃑� = �⃑⃑�   ,                                                                             𝐸𝑞. (2)    
 

which also gives the definitions of the matrix A and vectors �⃑⃑�  and �⃑⃑� . For this system, the exact solution 

is known to be 

 

�⃑⃑� 𝑆 = (

0
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0.5
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)  . 

 

Let us also recall a few relevant definitions. Given �⃑⃑� 𝑁 as a numerical solution, the relative true error 

(RTE) is defined as 

 

𝑅𝑇𝐸 =  
‖�⃑� ‖

‖�⃑⃑� 𝑆‖
  ,                                         𝐸𝑞. (3) 

 

where �⃑� =  �⃑⃑� 𝑁 − �⃑⃑� 𝑆 is the vector of absolute error. The relative residual (RRS) is defined as 

 

𝑅𝑅𝑆 =  
‖�⃑� ‖

‖�⃑⃑� ‖
  ,                                            𝐸𝑞. (4) 

 

where �⃑� =  𝑨�⃑⃑� 𝑁 − �⃑⃑�  is the residual vector. The key conclusion of the discussion (in Lecture 11) on 

condition number, C, is summarized by the inequality, 

 
1

𝐶
∗ (𝑅𝑅𝑆) ≤ (𝑅𝑇𝐸) ≤ 𝐶 ∗ (𝑅𝑅𝑆)  .      𝐸𝑞. (5) 

 

Conceptually, Eq. (5) provides the upper and lower bounds of RTE by computing RRS and C. Lastly, 

the condition number itself is defined by 

 

𝐶 =  ‖𝑨‖ ‖𝑨−1‖  .                                      𝐸𝑞. (6) 

 



In Eqs. (3)-(6), Euclidean norm is used for a vector and Euclidean 2-norm (or “Frobenius norm”) is 

used for a matrix. Let xj be the j-th element of a vector �⃑⃑�  with N elements, then 

 

‖�⃑⃑� ‖ =  √∑(𝑥𝑗)2
𝑁
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   . 

 

Let Aij be the element of an N x N matrix A at the i-th row and j-th column, then 
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(a) Solve the system in Eq. (1) with two methods: (i) Jacobi iterative method, using (x1, x2, x3, x4) = 

(0,0,0,0) as the initial guess to perform 20 iterations. (ii) Gauss-Seidel iterative method, using (x2, x3, x4) 

= (0,0,0) as the initial guess to perform 20 iterations. (Note that the G-S method does not require an initial 

guess for x1.)  Here, one iteration means completing the update of all x1, x2, x3, and x4 once. From the 

results, make a plot of the relative true error (RTE) vs. the number of iterations for both methods. Please 

collect the two curves of RTE in the same plot for a clear comparison. Since RTE decreases dramatically 

with the number of iterations, for clarity we require that the actual plot be made by taking the 10-based 

logarithm of RTE. In other words, the deliverable is the line plot of log10(RTE) vs. the number of iterations. 

(In Matlab, the built-in function for 10-based log is log10.) 

 

(b) Compute the condition number, C, for the system in Eq. (1). Using the result from the case in Part (a) 

with Gauss-Seidel method, make a plot with 3 curves (must be collected in the same plot): The first is 

the curve of log10(RTE) vs. the number of iterations, as recycled from Part (a). (Despite the redundancy, 

for clarity we ask that a new plot be made for Part (b). Do not merge the deliverables in Part (a) and (b) 

into a single plot.) The other two are the curves for log10(RRS*C) and log10(RRS*C–1), vs. the number of 

iterations. This plot serves the purpose of demonstrating the relations in Eq. (5). Namely, RRS*C and 

RRS*C–1 provide the upper bound and lower bound of RTE. (If C is close to 1, these bounds are “tight” 

and RRS is a useful proxy of RTE. If C is very large, RTE is detached from RRS.) 

 

Prob (2 points) 

A set of 8 data points is given: 

 

 x   y 

4 406 

5 440 

7 496 

8 565 

9 684 

10 812 

11 971 

13 1000 



 

(a) Perform linear least-squares regression (Sec 6.2.2) to obtain a line, y = ax + b, to represent the data. 

In addition, calculate the error of the least-squares fit, E, as defined by Eq. (6.6) in textbook. The 

deliverables are the linear formula (please provide the values of a and b) and the value of E. 

 

(b) Perform quadratic least-squares regression (pp. 207-208; Eq. (6.22)-(6.28)) to obtain a quadratic 

formula, y = p x2 + q x + r, to represent the data. In addition, calculate the error of the least-squares fit, 

E, as defined by Eq. (6.22) in textbook. The deliverables are the quadratic formula (please provide the 

values of p, q, and r) and the value of E. Compare this E value with that obtained in Part (a). Does the 

quadratic fit produce a smaller error compared to linear fit? 

 

(c) Draw the two curves obtained in (a) and (b), i.e., the linear and quadratic curves, along with the 

original data points in a single plot. (Do not connect the original data points. Present them as isolated 

points. See Matlab Example 41-44 for the proper Matlab commands to use.) 

 

Prob 3 (2 points) 

A set of 4 data points is given: 

 

 x   y 

1 1.2 

1.8 3 

3 2 

5 2.5 

 

(a) Following the procedure in Sec. 6.6.2, determine the quadratic splines that fit the data. Plot the 

quadratic splines and the original data points in a single figure, in the fashion of the figure in Example 

6-7 in textbook. Show your procedure. 

 

(b) Directly fit the data by a single 3rd-order polynomial that runs through all of the data points. In this 

case, you are required to use the Lagrange interpolation method (Sec 6.5.1) and show the procedure. Plot 

the 3rd-order polynomial and the original data points in a single figure.  

 

If you choose to do so, it is fine to merge the plots for Part (a) and Part (b) into a single plot. Note that 

the “original data points” are the same for the two tasks. 

 

 

 

 

 

 

 

 

    

 


