MAE384, Spring 2022 Homework \#2

A statement of collaboration is required. If there is no collaboration, write "No collaboration". For the computation of condition number, you are allowed to use Matlab built-in function inv. Please include computer codes in your work.

Problem 1 (6 points)
A system of linear equations is given:
$\left(\begin{array}{cccr}7 & 4 & 2 & 0.5 \\ 0.5 & 3 & 1 & 0.5 \\ 1.5 & 0.5 & 5 & 2 \\ 1 & 2 & 0.5 & 4\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)=\left(\begin{array}{c}23.5 \\ 12 \\ 15 \\ 12\end{array}\right)$.
Symbolically, we write $E q$. (1) as
$\boldsymbol{A} \overrightarrow{\boldsymbol{x}}=\overrightarrow{\boldsymbol{b}}$,
which also gives the definitions of the matrix \boldsymbol{A} and vectors $\overrightarrow{\boldsymbol{x}}$ and $\overrightarrow{\boldsymbol{b}}$. For this system, the exact solution is known to be
$\overrightarrow{\boldsymbol{x}}_{S}=\left(\begin{array}{l}1 \\ 3 \\ 2 \\ 1\end{array}\right)$.
Let us also recall a few relevant definitions. Given $\overrightarrow{\boldsymbol{x}}_{N}$ as a numerical solution, the relative true error $(R T E)$ is defined as
$R T E=\frac{\|\overrightarrow{\boldsymbol{e}}\|}{\left\|\overrightarrow{\boldsymbol{x}}_{S}\right\|}$,
where $\overrightarrow{\boldsymbol{e}}=\overrightarrow{\boldsymbol{x}}_{N}-\overrightarrow{\boldsymbol{x}}_{S}$ is the vector of absolute error. The relative residual $(R R S)$ is defined as
$R R S=\frac{\|\overrightarrow{\boldsymbol{r}}\|}{\|\overrightarrow{\boldsymbol{b}}\|}$,
where $\overrightarrow{\boldsymbol{r}}=\boldsymbol{A} \overrightarrow{\boldsymbol{x}}_{N}-\overrightarrow{\boldsymbol{b}}$ is the residual vector. The key conclusion of the discussion (in Lecture 11) on condition number, C, is summarized by the inequality,
$\frac{1}{C} *(R R S) \leq(R T E) \leq C *(R R S) . \quad E q .(5)$
Conceptually, Eq. (5) provides the upper and lower bounds of $R T E$ from $R R S$ and C. The condition number itself is defined by
$C=\|A\|\left\|A^{-1}\right\|$.
In Eqs. (3)-(6), Euclidean norm is used for a vector and Euclidean 2-norm (or "Frobenius norm") is
used for a matrix. Let x_{j} be the j-th element of a vector $\overrightarrow{\boldsymbol{x}}$ with N elements, then
$\|\overrightarrow{\boldsymbol{x}}\|=\sqrt{\sum_{j=1}^{N}\left(x_{j}\right)^{2}}$.
Let $A_{i j}$ be the element of an $N \times N$ matrix \boldsymbol{A} at the i-th row and j-th column, then
$\|\boldsymbol{A}\|=\sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N}\left(A_{i j}\right)^{2}}$.
(a) Solve the system in Eq. (1) with two methods: (i) Jacobi iterative method, using ($x_{1}, x_{2}, x_{3}, x_{4}$) = $(0,0,0,0)$ as the initial guess to perform 20 iterations. (ii) Gauss-Seidel iterative method, using (x_{2}, x_{3}, x_{4}) $=(0,0,0)$ as the initial guess to perform 20 iterations. (Note that the $G-S$ method does not require an initial guess for x_{1}.) Here, one iteration means completing the update of all x_{1}, x_{2}, x_{3}, and x_{4} once. From the results, make a plot of the relative true error $(R T E)$ vs. the number of iterations for both methods. Please collect the two curves of RTE in the same plot for a clear comparison. Since RTE decreases dramatically with the number of iterations, for clarity we require that the actual plot be made by taking the 10 -based logarithm of RTE. In other words, the deliverable is the line plot of $\log _{10}(R T E)$ vs. the number of iterations. (In Matlab, the built-in function for 10 -based \log is $\log 10$.)
(b) Compute the condition number, C, for the system in Eq. (1). Using the result from the case in Part (a) with Gauss-Seidel method, make a plot with 3 curves (must be collected in the same plot): The first is the curve of $\log _{10}(R T E)$ vs. the number of iterations, as recycled from Part (a). (Despite the redundancy, for clarity we ask that a new plot be made for Part (b). Do not merge the deliverables in Part (a) and (b) into a single plot.) The other two are the curves for $\log _{10}\left(R R S^{*} C\right)$ and $\log _{10}\left(R R S^{*} C^{-1}\right)$, vs. the number of iterations. This plot serves the purpose of demonstrating the relations in Eq. (5). Namely, $R R S^{*} C$ and $R R S^{*} C^{-1}$ provide the upper bound and lower bound of $R T E$. (If C is close to 1 , these bounds are "tight" and $R R S$ is a useful proxy of $R T E$. If C is very large, $R T E$ is detached from $R R S$.)

