MAE384, Spring 2022 Homework \#5

Please include a statement of collaboration in your work. Uses of Matlab built-in functions for numerical integration, such as trapz, quad, and integral, are NOT allowed for this homework.

Problem 1 (7 points)

Evaluate the following integral,
$I=\int_{0}^{3.6} f(x) d x$,
where

$$
f(x)=e^{\left[\cos \left(e^{x}\right)\right]}+0.1 x^{2}
$$

using (a) the composite Trapezoidal method, (b) the composite Simpson's $\mathbf{1 / 3}$ method, and (c) the composite Simpson's 3/8 method. For each method, perform the calculation with three different choices of grid spacing: $h=0.1,0.01$, and 0.001 . Fill Table 1 with the outcome of your calculations. IMPORTANT: Each number in Table 1 must be listed to at least 7 digits to the right of the decimal point. In Matlab, this can be done by using formatted output (e.g., using fprintf function with the format of \%10.7f). Briefly discuss the results.

A properly filled Table 1 and the computer codes for the three methods are the key deliverables of this problem. No credit without the computer codes.

Table 1: Fill the blanks with the values of the integral, I.

	Trapezoidal method	Simpson's 1/3 method	Simpson's 3/8 method
$h=0.1$			
$h=0.01$			
$h=0.001$			

