MAE384, Spring 2022 Homework \#7

A statement of collaboration is required. For this assignment, uses of Matlab built-in functions for solving boundary value problems, such as bvp4c and bvpinit, are NOT allowed. Otherwise, you may use Matlab functions such as backslash ("\") or inv to solve a system of linear equations or invert a matrix.

Note: For any sinusoidal functions you might encounter in this homework, the argument of the function is always in radian.

Problem 1 (5 points)
Consider the following boundary value problem for $u(x)$ defined on the interval of $0 \leq x \leq 1$,

$$
u^{\prime \prime}+9 u=0, \quad u(0)=0.5 \quad u^{\prime}(1)=0 . \quad(\text { "prime" is differentiation with respect to } x, " \mathrm{~d} / \mathrm{d} x ")
$$

Note that the boundary condition at $x=1$ is imposed on the derivative of u.
(a) Find the analytic solution, which will be used to validate the numerical solutions. (You may use any methods/tools to obtain the analytic solution, but please describe in the report how the solution is obtained.)
(b) Solve the BVP using the finite-difference method. Specifically, use the 3-point second-order central difference formula to approximate the second derivative in the ODE: $u_{\mathrm{i}}^{\prime \prime} \approx\left(u_{\mathrm{i}-1}-2 u_{\mathrm{i}}+u_{\mathrm{i}+1}\right) /\left((\Delta x)^{2}\right)$. For the boundary condition at $x=1$, use the 2-point first-order backward finite difference formula to approximate the first derivative: $u_{\mathrm{i}}{ }^{\prime} \approx\left(u_{\mathrm{i}}-u_{\mathrm{i}-1}\right) /(\Delta x)$. Obtain the numerical solution for the two cases: (I) $\Delta x=0.2$, (II) $\Delta x=0.05$.

Plot the analytic solution and two numerical solutions over the interval of $0 \leq x \leq 1$. Collect all three curves in one plot and clearly label the curves.

Problem 2 (5 points)

Consider the following boundary value problem for $u(x)$ defined on the interval of $1 \leq x \leq 3$,

$$
x u^{\prime \prime}+\left(1-x^{2}\right) u^{\prime}+\cos (x) u=0, \quad u(1)=4, u(3)=2 .
$$

(Note that the left end point of the interval is $x=1$, not $x=0$.)
Solve the BVP using the finite-difference method. Specifically, use the 3-point second-order central difference formula to approximate the second derivative: $u_{\mathrm{i}}^{\prime \prime} \approx\left(u_{\mathrm{i}-1}-2 u_{\mathrm{i}}+u_{\mathrm{i}+1}\right) /\left((\Delta x)^{2}\right)$, and use the 2-point first-order forward difference formula to approximate the first derivative: $u_{\mathrm{i}}^{\prime} \approx\left(u_{\mathrm{i}+1}-u_{\mathrm{i}}\right) /(\Delta x)$. Obtain the numerical solutions for the two cases: (I) $\Delta x=0.2$, (II) $\Delta x=0.02$. Plot the two numerical solutions over the interval of $1 \leq x \leq 3$. Collect both curves in one plot and clearly label the curves. You do not need to find or show the analytic solution for this problem.

