MAE 384 Homework \#2

1. Solve the equation,

$$
0.5 x^{2}-\sin (x)+0.1=0
$$

using Newton's method. Find all of the solutions. Please show your work by providing the detail of the intermediate steps of the iteration procedure.
When to stop: A solution with $\left|f\left(x_{\mathrm{N}}\right)\right|<0.0001$, where $f(x) \equiv 0.5 x^{2}-\sin (x)+0.1$ and x_{N} is your numerical solution, will be considered satisfactory. 4 points

Hints:
(i) Note that the argument x in $\sin (x)$ should be in radian, not degree. Make sure that you use "RAD" instead of "DEG" mode when evaluating $\sin (x)$ using a calculator. This is not a concern if you use Matlab, for which the radian mode is the default.
(ii) It is useful to visualize the problem before solving it. Try to make a plot of $f(x)$ and choose an initial guess that is close to one of the intersections of $f(x)$ and the zero line.
2. Solve the equation,

$$
0.1 x^{3}-\mathrm{e}^{-x}=0,
$$

using the fixed-point iteration method. Please show your work. A solution with $\left|f\left(x_{\mathrm{N}}\right)\right|<0.01$, where $f(x) \equiv 0.1 x^{3}-\mathrm{e}^{-x}$ and x_{N} is your numerical solution, will be considered satisfactory. $\mathbf{2}$ points

You may choose to solve the problems in this homework by hand or by Matlab. Your choice will not affect the score. If a Matlab program is used to solve a problem, please provide the codes. This remark applies to all future homework assignments.

