MAE384 Homework \#3

1. Solve the equation,

$$
\left(\begin{array}{ll}
3 & 8 \\
6 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{9}{4}
$$

using the LU decomposition method. No credit if you use any other methods, even with the correct final solution. As always, please show your work. 3 points
2. Solve the equation,

$$
\left(\begin{array}{ccc}
0 & 1 & 3 \\
2 & 3 & -1 \\
-1 & -1 & 5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
9 \\
11 \\
5
\end{array}\right)
$$

using the Gauss elimination method. Apply pivoting if necessary. 2 points
3. (a) Find the condition number of the matrix,

$$
\mathbf{A}=\left(\begin{array}{ll}
6 & 1 \\
2 & 7
\end{array}\right)
$$

Use the Euclidean norm (Eq. (4.76) in G\&S textbook) where the norm of a matrix needs to be evaluated. (b) Based on the result of (a), would you consider the equation, $\mathbf{A x}=\mathbf{b}$ (\mathbf{b} is an arbitrary vector), ill-conditioned? 2 points
4. Solve the system of linear equations,

$$
\begin{aligned}
6 x_{1}+x_{2}+x_{3} & =4 \\
x_{1}+6 x_{2}+x_{3} & =4 \\
x_{1}+x_{2}+6 x_{3} & =4,
\end{aligned}
$$

using the Gauss-Seidel iteration method with initial guess of $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,0)$. Perform 3 iterations, i.e., update each of x_{1}, x_{2}, and $x_{3} 3$ times. 3 points

