MAE384 HW1

Comments:

Prob. 1
We will discuss this problem in class.
Prob. 2
Many of you attempted to divide 256.1875 by 265 before proceeding to the standard binary decomposition. In this case, the correct procedure is

Step 1: $\quad 256.1875=\frac{256.1875}{256} \times 256=1.000732421875 \times 2^{8}$.
Step 2: $\quad 1.000732421875=2^{1}+2^{-11}+2^{-12} ; 8=2^{3}$ $=>1.000732421875=1.000000000011 \times 2^{1000}$

In step 1, all digits in " 1.000732421875 " must be retained. Rounding the number shall lead to an incorrect answer. (Some of you obtained "1.000732422", which I realized was due to insufficient precision of your calculators.) For this problem, it is easier to first decompose 256.1875 into $256+$ $0.125+0.0625=2^{8}+2^{-3}+2^{-4}=100000000.0011$ in binary form. Then, advancing the floating point by 8 places to the left, one immediately obtains the desirable final answer. See attached sample solution for yet another alternative.

Prob 3 and 4 are straightforward.
Sample solutions to Prob 2, 3, and 4 are attached.
$256.1875 \Rightarrow$ CONVERT TO BINARY IN FlOATING POUT REPRESENTATION:

$$
256=2^{8}=100000000(\text { binARY })
$$

NOW CONVERT. 1875 INTO BINARY AND ADD:

$$
\frac{.1875}{2^{-3}} \cdot 2^{-3}=1.5 \times 2^{-3}=\begin{aligned}
& 1.1 \times 2^{-3}=.0011(\mathrm{~b} / \mathrm{w}) \\
& \left(2^{-1}=5\right)
\end{aligned}
$$

$$
\text { Now ADD the Two: }+\frac{100000000.0011}{}=\frac{100000000.0011}{}
$$

$$
100000000.0011(\mathrm{DiN})
$$

$$
2^{8}+\quad 2^{-3}+2^{-4}=256+.125+.0625
$$

$$
=256.1875
$$

So: $100000000.0011=256.1875$

$$
\begin{aligned}
& 1000000000.0011=1.00000000011 \times 2^{8} \\
& 8=2^{3}+0+0+0=1000 \text { (BINARY) }
\end{aligned}
$$

So Now ThE AMSWER is:

$$
1,000000000011 \times 2^{1000}
$$

Sample solution, Prob 3 (Thanks to Aishwarya Stanley)
3) $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots$

Evaluate e^{-2}
a) frost tour terms:

$$
\begin{aligned}
& e^{-2}=1-2+\frac{(-2)^{2}}{2!}+\frac{(-2)^{3}}{3!} \\
& e^{-2}=1-2+\frac{4}{2}-\frac{8}{6}=-0.333333333
\end{aligned}
$$

b) fist 6 terms:

$$
\begin{aligned}
& e^{-2}=1-2+\frac{(-2)^{2}}{2!}+\frac{(-2)^{3}}{3!}+\frac{(-2)^{4}}{4!}+\frac{(-2)^{5}}{5!} \\
& e^{-2}=1-2+2-\frac{8}{6}+\frac{16}{24}-\frac{32}{120} \\
& e^{-2}=1-\frac{4}{3}+\frac{4}{6}-\frac{8}{30} \\
& e^{-2}=1-\frac{4}{3}+\frac{2}{3}-\frac{8}{30}=1-\frac{2}{3}-\frac{4}{15}=\frac{45-30-12}{45}=\frac{3}{45}=0.066666666
\end{aligned}
$$

c) fist \&terms

$$
\begin{aligned}
& e^{-2}=1-2+\frac{(-2)^{2}}{2!}+\frac{(-2)^{3}}{3!}+\frac{(-2)^{4}}{4!}+\frac{(-2)^{5}}{5!}+\frac{(-2)^{6}}{6!}+\frac{(-2)^{7}}{7!} \\
& e^{-2}=1-2+2-\frac{8}{6}+\frac{16}{24}-\frac{32}{120}+\frac{64}{120}-\frac{128}{5040} \\
& e^{-2}=1-\frac{4}{3}+\frac{2}{3}-\frac{8}{30}+\frac{4}{45}-\frac{8}{315} \\
& e^{-2}=1-\frac{2}{3}-\frac{4}{15}+\frac{4}{45}-\frac{8}{315}=0.13015873
\end{aligned}
$$

d) Evaluate e^{-2} venin bouilt-ni exponential function $e^{-2}=0.135335283 \quad$ Invevalue

Evaluate truncation eros for (a) - (c).
(a) $E^{T R}=0.135335283-(-0.333333333)=0.468668616$
(b) $E^{T_{1}}=0.135335283-0.066666666=0.068668617$
frame) $E^{\pi}=0.135335283-0.13015873=\underline{\underline{5.176553837 \times 10^{-3}}}$

Sample solution, Prob 4 (Thanks to Jennifer Gamboa)
4. $x^{3}-1=0$

(1)

$$
\begin{aligned}
& x_{1}=0.5 \quad x_{2}=2 \\
& x_{3}=\frac{2+0.5}{2}=\frac{2.5}{2}=1.25 \\
& f\left(x_{1}\right)=(0.5)^{3}-1=-.875 \\
& f\left(x_{3}\right)=(1.25)^{3}-1=.953125 \\
& f\left(x_{1}\right) \cdot f\left(x_{3}\right)=-.834 \ldots<0 \\
& (0.5,1.25)
\end{aligned}
$$

(2)

$$
\begin{aligned}
& x_{1}=0.5 \quad x_{3}=1.25 \\
& x_{4}=\frac{1.25+0.5}{2}=.875 \\
& f\left(x_{1}\right)=-.875 \\
& f\left(x_{4}\right)=(.875)^{3}-1=-.33007 \ldots \\
& f\left(x_{1}\right) \cdot f\left(x_{4}\right)=(-.875)(-.33007 \ldots)=.2888 \ldots>0 \text { next } \\
& (0.875,1.25)
\end{aligned}
$$

(3)

$$
\begin{aligned}
& x_{3}=1.25 \quad x_{4}=0.875 \\
& x_{5}=\frac{1.25+0.875}{2}=1.0625 \\
& f\left(x_{3}\right)=.953125 \\
& f\left(x_{5}\right)=(1.0625)^{3}-1=.1994628 \ldots \\
& f\left(x_{3}\right) \cdot f\left(x_{5}\right)=(.953125)(.1994628 \ldots)=.190113 \ldots>0 \text {. next } \\
& (0.875,1.0625)
\end{aligned}
$$

(4)

$$
\begin{aligned}
& x_{4}=0.875 x_{5}=1.0625 \\
& x_{6}=\frac{0.875+1.0625}{2}=.96875 \\
& f\left(x_{4}\right)=-.33007 \ldots \\
& f\left(x_{6}\right)=(.96875)^{3}-1=-.09085 \ldots
\end{aligned}
$$

Prob 4, continued

$$
\begin{aligned}
& f\left(x_{4}\right) \cdot f\left(x_{6}\right)=(-) \cdot(-)=+>0 \text { next } \\
& (0.96875,1.0625)
\end{aligned}
$$

(5)

$$
\begin{aligned}
& x_{6}=0.96875 \quad x_{5}=1.0625 \\
& x_{7}=\frac{0.96875+1.0625}{2}=1.015625 \\
& f\left(x_{6}\right)=-.09085 \ldots \\
& f\left(x_{7}\right)=(1.015625)^{3}-1=.04761 \ldots \\
& \left.f\left(x_{6}\right) \cdot f\left(x_{7}\right)=(-.09085) \cdot(.04761)=-.004325 \ldots<0\right) \text { next } \\
& (0.96875,1.015625) \\
& x_{8}=\frac{0.96875+1.015625}{2}=0.9921875
\end{aligned}
$$

True error: Trueqrror $=X_{\text {TS }}-X_{\text {NS }}$

$$
\begin{aligned}
& =1-0.9921875 \\
& =0.0078125
\end{aligned}
$$

$$
\begin{aligned}
\text { True relative error } & =\left|\frac{x_{T S}-x_{N S}}{x_{T S}}\right| \\
& =\left|\frac{1-0.9921875}{1}\right|=0.0078125
\end{aligned}
$$

where $x_{T S}=1$ and $x_{N S}=0.9921875$

