MAE 384 HW3
Prob 1 and 2, Sample solutions (Thanks to Brandon Woodward)

1) Solve the eq. Using LU decomposition method

$$
\left[\begin{array}{ll}
3 & 8 \\
6 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
9 \\
4
\end{array}\right] \quad \begin{aligned}
& \text { using } \\
& \text { crouts }
\end{aligned}\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{ll}
L_{11} & 0 \\
L_{21} & L_{22}
\end{array}\right]\left[\begin{array}{ll}
1 & u_{12} \\
0 & 1
\end{array}\right]
$$

$$
i=1,2 \quad L_{i 1}=a_{i 1} \quad \Rightarrow \quad L_{11}=a_{11}=3 \quad L_{21}=a_{21}=6
$$

$$
U_{1 j}=\frac{a_{1 j}}{L_{11}} \Rightarrow U_{12}=\frac{a_{12}}{L_{11}}=\frac{8}{3}
$$

$$
u_{i i}=1 \Rightarrow u_{11}=u_{22}=1
$$

$$
L_{22}=a_{22}-L_{21} U_{12} \Rightarrow 2-6(8 / 3)=-14
$$

$$
\text { so, }[a]=[L][U] \Rightarrow\left[\begin{array}{ll}
3 & 8 \\
6 & 2
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
6 & -14
\end{array}\right]\left[\begin{array}{cc}
1 & 8 / 3 \\
0 & 1
\end{array}\right] \text {, so }
$$

$$
[L][y]=[b] \Rightarrow\left[\begin{array}{cc}
3 & 0 \\
6 & -14
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
9 \\
4
\end{array}\right] \quad y_{1}=\frac{9}{3}=3
$$

And finally, $[u][x]=[y]$

$$
y_{2}=\frac{4-6 y_{1}}{-14}=\frac{4-18}{-14}=1 \quad y=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{cc}
1 & 8 / 3 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right] \quad \begin{aligned}
& x_{2}=1 \\
& x_{1}=3-8 / 3\left(x_{2}\right)
\end{aligned} \Rightarrow 1 / 3 \quad x=\left[\begin{array}{c}
1 / 3 \\
1
\end{array}\right]
$$

2) Solve using Gauss elimination method

$$
\left[\begin{array}{ccc}
0 & 1 & 3 \\
2 & 3 & -1 \\
-1 & -1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
9 \\
11 \\
5
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
a_{11} a_{12} & a_{13} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} \\
0 & 0 & a_{33}^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1}^{\prime} \\
b_{2} \\
b_{3}^{\prime}
\end{array}\right]
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Swap } \\
\text { rows } \\
1+3
\end{array} \Rightarrow\left[\begin{array}{ccc}
-1 & -1 & 5 \\
2 & 3 & -1 \\
0 & 1 & 3
\end{array}\right] \begin{array}{l}
5 m_{21}=\frac{a_{21}}{a_{11}}=-2 \\
9
\end{array} \begin{array}{l}
a_{22}^{\prime}=a_{22}-a_{12}\left(m_{21}\right)=3-(+2)=1 \\
a_{23}^{\prime}=a_{23}-a_{13}\left(m_{21}\right)=-1-(-10)=9
\end{array}
\end{aligned}
$$

$$
m_{32}=\frac{a_{32}}{a_{22}}=\frac{1}{1}=1
$$

$$
b_{2}^{\prime}=b_{2}-b_{1}\left(m_{21}\right)=11-(-10)=21
$$

$$
a_{33}^{\prime}=a_{33}-m_{32}\left(a_{23}^{\prime}\right)=3-1(9)=-6
$$

$$
b_{3}^{\prime}=b_{3}-b_{2}^{\prime}\left(m_{32}\right)=9-1(21)=-12
$$

$$
\Rightarrow\left[\begin{array}{ccc}
-1 & -1 & 5 \\
0 & 1 & 9 \\
0 & 0 & -6
\end{array}\right]\left[\begin{array}{l}
x_{3} \\
x_{2} \\
x_{1}
\end{array}\right]=\left[\begin{array}{c}
5 \\
21 \\
-12
\end{array}\right] \quad \begin{gathered}
-6 x_{1}=-12 \\
x_{2}+9 x_{1}=21
\end{gathered} \quad x_{1}=2 \quad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
2
\end{array}\right]
$$

Prob 3 and 4, Sample solutions (Thanks to Jaya Singh)

Prob 3

3. Find C - the Condition Number of the matrix: (using the Euclidean norm)
-0

$$
\left.\begin{array}{l}
A=\left(\begin{array}{ll}
6 & 1 \\
2 & 7
\end{array}\right) \quad \begin{array}{rl}
\text { Euclidean norm: } \\
\|A\|_{2} & =\sqrt{(6)^{2}+(1)^{2}+(2)^{2}+(7)^{2}} \\
& =\sqrt{36+1+4+49} \\
A^{-1}=\left(\begin{array}{cc}
7 / 40 & -1 / 40 \\
-1 / 20 & 3 / 20
\end{array}\right] \quad & =\sqrt{90}=9.48683 \\
& \left\|A^{-1}\right\|_{2}
\end{array}=\sqrt{(7 / 40)^{2}+(-1 / 40)^{2}+(-1 / 20)^{2}+(3 / 20)^{2}} \\
\end{array}\right]=0.23717 .
$$

(b) Given that the value of the Condition Number, ' C ', is relatively small \Rightarrow the problem: $\underline{A} \underline{x}+\underline{b}$ is NOT ill-conditioned.

(Prob 4 next page)

4.)

Solve the system of linear equations using the Gauss-Siedel Iteration Method;

$$
\begin{aligned}
6 x_{1}+x_{2}+x_{3} & =4 \\
x_{1}+6 x_{2}+x_{3} & =4 \\
x_{1}+x_{2}+6 x_{3} & =4
\end{aligned}
$$

Initial Guess: $\left(\begin{array}{c}x_{1}^{I} \\ x_{2}^{I} \\ x_{3}^{I}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \rightarrow$ Given
$\left(\begin{array}{lll}6 & 1 & 1 \\ 1 & 6 & 1 \\ 1 & 1 & 6\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}4 \\ 4 \\ 4\end{array}\right) \xrightarrow{\text { divide by diagonal }} \begin{aligned} & x_{1}=4 / 6-1 / 6 x_{2}-1 / 6 x_{3} \\ & x_{2}=4 / 6-1 / 6 x_{1}-1 / 6 x_{3} \\ & x_{3}=4 / 6-1 / 6 x_{1}-1 / 6 x_{2}\end{aligned}$
$\rightarrow\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}2 / 3 \\ 2 / 3 \\ 2 / 3\end{array}\right)-\left(\begin{array}{ccc}0 & 1 / 6 & 1 / 6 \\ 1 / 6 & 0 & 1 / 6 \\ 1 / 6 & 1 / 6 & 0\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$
Gauss-Siedel Method:

$$
\begin{aligned}
& x_{1}^{\text {II }}=2 / 3-1 / 6 x_{2}^{I}-1 / 6 x_{3}^{\text {I }}=2 / 3-1 / 6(0)-1 / 6(0)=2 / 3 \\
& x_{2}^{\text {II }}=2 / 3-1 / 6 x_{1} \text { II }-1 / 6 x_{3}^{\text {I }}=2 / 3-1 / 6(2 / 3)-1 / 6(0)=5 / 9 \\
& x_{3} \text { II }=2 / 3-1 / 6 x_{1} \text { II }-1 / 6 x_{2}^{\text {II }}=2 / 3-1 / 6(2 / 3)-1 / 6(5 / 9)=25 / 54 \\
& x_{1} \text { II }=2 / 3-1 / 6 x_{2} \text { II }-1 / 6 x_{3} \text { II }=2 / 3-1 / 6(5 / 9)-1 / 6(25 / 54)=161 / 324
\end{aligned}
$$

$$
x_{2}^{\text {II }}=2 / 3-1 / 6 x_{1} \text { III }-1 / 6 x_{3} \text { II }=2 / 3-1 / 6(161 / 324)-1 / 6(25 / 54)=985 / 1944
$$

$$
x_{3}^{\text {III }}=2 / 3-1 / 6 \times \text { III }-1 / 6 \times 2 \text { III }=2 / 3-1 / 6(161 / 324)-1 / 6(985 / 1944)=0.4994
$$

$$
x_{1}^{\text {I }}=2 / 3-1 / 6 x_{2}^{\text {III }}-1 / 6 x_{3}^{\text {III }}=2 / 3-1 / 6(985 / 1944)-1 / 6(0.4994)=0.49898
$$

$$
x_{2}^{\text {IV }}=2 / 3-1 / 6 x_{1}^{\text {IV }}-1 / 6 x_{3}^{\text {III }}=2 / 3-1 / 6(0.49898)-1 / 6(0.4994)=0.50027
$$

$$
x_{3}^{\mathbb{\nabla}}=2 / 3-1 / 6 x_{1} \nabla-1 / 6 x_{2} \nabla=2 / 3-1 / 6(0.49898)-1 / 6(0.50027)=0.50012
$$

Iteration I: $\left(\begin{array}{l}x_{1}^{\text {II }} \\ x_{2}^{\text {II }} \\ x_{3} \text { II }\end{array}\right)=\left(\begin{array}{l}2 / 3 \\ 5 / 9 \\ 25 / 54\end{array}\right)$
Iteration II: $\left(\begin{array}{l}x_{1}^{\text {III }} \\ x_{2}^{\text {III }} \\ x_{3}^{\text {III }}\end{array}\right)=\left(\begin{array}{l}161 / 324 \\ 985 / 1944 \\ 0.4994\end{array}\right)$
Iteration III: $\left(\begin{array}{l}x_{1}^{\text {II }} \\ x_{2}^{\text {IV }} \\ x_{3}^{\text {IV }}\end{array}\right)=\left(\begin{array}{l}0.49898 \\ 0.50027 \\ 0.50012\end{array}\right)$

