MAE 384 Homework 5 Discussion

Prob. 1 The result for (b) is much more accurate than those for (a) and (c), because the scheme in (b) is "4th order" with a truncation error of $O\left(h^{4}\right)$, while the other two are of $O\left(h^{2}\right)$ accuracy. This shows that the truncation error $\left(O(h), O\left(h^{2}\right)\right.$, etc.) is a critical part of the numerical scheme and should be treated seriously. Note that if the numerical scheme used in (c) is replaced by a 4th order scheme taken from Table 6-1, one will also obtain a much better result for f " (x) that is comparable in accuracy to the result of (b).

Prob. 2 The key idea for this problem is to combine the Taylor series expansions at $\mathrm{x}=$ $\mathrm{x}_{\mathrm{i}-1}$ and $\mathrm{x}=\mathrm{x}_{\mathrm{i}+1}$ to eliminate the terms with $\mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right) h$. This ensures that in the finitedifference approximation f " $\left(\mathrm{x}_{\mathrm{i}}\right)$ can be written as a function of $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}-1}\right), \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)$ and $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}+1}\right)$ only. See sample solution. Also, in this process, the terms with f "' (x_{i}) h^{3} cannot be eliminated entirely (this is different from the case when $\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}-1}\right)=\left(\mathrm{x}_{\mathrm{i}+1}-\mathrm{x}_{\mathrm{i}}\right)=h$), therefore the resulted truncation error is of order $\mathrm{O}(h)$ instead of $\mathrm{O}\left(h^{2}\right)$.

Prob. 3 To obtain a formula for $\mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right)$ with $\mathrm{O}\left(h^{3}\right)$ accuracy, we need to eliminate the terms with f " $\left(\mathrm{x}_{\mathrm{i}}\right) h^{2}$ and f " $"\left(\mathrm{x}_{\mathrm{i}}\right) h^{3}$ in the Taylor series. This requires the combination of 3 Taylor series at 3 neighboring points of x_{i}. The sample solution is for the case when the Taylor series at $\mathrm{x}=\mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}+1}$, and $\mathrm{x}_{\mathrm{i}+2}$ are used. Note that there is a systematic way to solve this type of problems. Using the notation in the sample solution, the 3 Taylor series are (L1), (L2), and (L4). Our goal is to combine the three to form the finite difference formula with vanishing $\mathrm{f} "\left(\mathrm{x}_{\mathrm{i}}\right) h^{2}$ and f " $"\left(\mathrm{x}_{\mathrm{i}}\right) h^{3}$ terms. Let's assume that the desirable formula is

$$
\begin{equation*}
1 \times(\mathrm{L} 1)+\mathrm{A} \times(\mathrm{L} 2)+\mathrm{B} \times(\mathrm{L} 4) \tag{1}
\end{equation*}
$$

(The coefficient for (L1) can be set to 1 because only the ratios among the 3 coefficients are relevant.) The requirement for the h^{2} and h^{3} terms to vanish leads to $1+\mathrm{A}+4 \mathrm{~B}=0$ and $1-A+8 B=0$, or

$$
\left(\begin{array}{cc}
1 & 4 \\
-1 & 8
\end{array}\right)\binom{A}{B}=\binom{-1}{-1} .
$$

Plugging the solution, (A, B) $=(-1 / 3,-1 / 6)$ back to Eq. (1) one obtains the desirable formula. (Make sure you understand the argument.)

Prob. 4 With the designated value of $h=0.5$, the interval $[0,6]$ contains 12 subintervals. Clearly, the numerical integration needs to be performed with the composite Trapezoidal method (Eq. 7.13) and composite Simpson's $1 / 3$ method (Eq. 7.19). See first sample solution. This problem can be efficiently solved with a computer code since the summation is tedious but routine. See second sample solution using Matlab.

Sample solution, Prob 1 (Thanks to Chelsea Dickkut)

$f(x)=e^{-x} \sin (x) \quad n=0.5$
() Evaluate $f^{\prime}(x)$ at $x=1$, using
a) three-point backward scheme
b) four-point central difference scheme

Evaluate $f^{\prime \prime}(x)$ at $x=1$, using
c) four-point backward scheme
d) Compare results $a-c$ with exact values obtained from
analytic expressions $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ - evaluate the true relative errors.
a)

$$
\begin{aligned}
f^{\prime}\left(x_{i}\right) & =\frac{f\left(x_{i-2}\right)-4 f\left(x_{i-1}\right)+3 f\left(x_{i}\right)}{2 n} \\
f^{\prime}(x=1) & =\frac{f(0)-4 f(0.5)+3 f(1)}{2(0.5)} \\
& =\frac{e^{0} \sin (0)-4 e^{-0.5} \sin (0.5)+3 e^{-1} \sin (1)}{1}=-0.2344655259
\end{aligned}
$$

b)

$$
\begin{aligned}
f^{\prime}\left(x_{i}\right) & =\frac{f\left(x_{i-2}\right)-8 f\left(x_{i-1}\right)+8 f\left(x_{i+1}\right)-f\left(x_{i+2}\right)}{12 h} \\
f^{\prime}(x=1) & =\frac{f(0)-8 f(0.5)+8 f(1.5)-f(2)}{12(0.5)} \\
& =\frac{e^{0} \sin (0)-8 e^{-0.5} \sin (0.5)+8 e^{-1.5} \sin (1.5)-e^{-2} \sin (2)}{6} \\
& =-0.1114634336
\end{aligned}
$$

c)

$$
\begin{aligned}
f^{\prime \prime}\left(x_{i}\right) & =\frac{-f\left(x_{i-3}\right)+4 f\left(x_{i-2}\right)-5 f\left(x_{i-1}\right)+2 f\left(x_{i}\right)}{h^{2}} \\
f^{\prime \prime}(x=1) & =\frac{-f(-0.5)+4 f(0)-5 f(0.5)+2 f(1)}{(0.5)^{2}} \\
& =-\frac{e^{0.5} \sin (-0.5)+4 e^{0} \sin (0)-5 e^{-0.5} \sin (0.5)+2 e^{-1} \sin (1)}{0.25} \\
& =-0.1774904262 \quad
\end{aligned}
$$

d) analytic expressions:

$$
f^{\prime}(x)=e^{-x} \cos (x)-e^{-x} \sin (x)
$$

$$
f^{\prime}(1)=e^{-1} \cos (1)-e^{-1} \sin (1)=-0.1107937653
$$

$$
f^{\prime \prime}(x)=-e^{-x} \sin (x)-e^{-x} \cos (x)-e^{-x} \cos (x)+e^{-x} \sin (x)
$$

$$
f^{\prime \prime}(x)=-2 e^{-x} \cos (x)
$$

$$
f^{\prime \prime}(1)=-2 e^{-1} \cos (1)=-0.3975322207
$$

$$
\text { error for } a) \left\lvert\, \frac{-0.1107937653-(-0.2344655259)}{-0.1107937653}=\begin{gathered}
1.116233935 \\
111.62 \%
\end{gathered}\right.
$$

error for b) $\left|\frac{-0.1107937653-(-0.1114634336)}{-0.1107937653}\right|=\begin{gathered}0.0060442778 \\ 0.604 \%\end{gathered}$
error for c) $\left|\frac{-0.3975322207-(-0.1774904262)}{-0.3975322207}\right|=\begin{gathered}0.5535193955 \\ 55.35 \%\end{gathered}$
The four-point central difference scheme proved to provide the best answer with the least amount of error.

Sample solution, Prob. 2 (Thanks to Elie Chmouni)

The objective of this problem is to Derive a finite difference formula for the second derivative, f " (xi), that depends on the values of $\mathrm{f}(\mathrm{xi})$ at three points $\mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}}$, and $\mathrm{x}_{\mathrm{i}+1}$, where the spacing is
$x_{i}-x_{i-1}=h$ and $x_{i+1}-x_{i}=2 h$.
Thus using Eq (6.26) with modification to the spacing between x_{i} and x_{i+1} gives;
$\mathrm{f}\left(\mathrm{x}_{\mathrm{i}+1}\right)=\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right)(2 \mathrm{~h})+\frac{f^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right)}{2!}(2 h)^{2}+\frac{f^{(3)}\left(\zeta_{1}\right)}{3!}(2 h)^{3}+\ldots$
Also using Eq (6.27) the spacing between x_{i} and $\mathrm{x}_{\mathrm{i}+1}$ is h and gives;
$\mathrm{f}\left(\mathrm{x}_{\mathrm{i}-1}\right)=\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)-\mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right)(\mathrm{h})+\frac{f^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right)}{2!}(h)^{2}-\frac{f^{(3)}\left(\zeta_{2}\right)}{3!}(h)^{3}+\ldots$
thus we need to get rid of $f^{\prime}(x)$ by performing the following algebraic manipulation:
Result $=\mathrm{Eq}(1)+2 * \mathrm{Eq}(2)$

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{x}_{\mathrm{i}+1}\right)+2 \mathrm{f}\left(\mathrm{x}_{\mathrm{i}-1}\right)=\underline{\left.\underline{\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)}\right)+\mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right)(2 \mathrm{~h})+\frac{f^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right)}{2!}(2 h)^{2}+\frac{f^{(3)}\left(\zeta_{1}\right)}{3!}(2 h)^{3}+2 \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)-2 f^{\prime}\left(\mathrm{x}_{1}\right)(\mathrm{h})+\not 2 \frac{f^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right)}{2!}(h)^{2}-2 \frac{f^{(3)}\left(\zeta_{2}\right)}{3!}(h)^{3}} \\
& \mathrm{f}\left(\mathrm{x}_{\mathrm{i}+1}\right)+2 \mathrm{f}\left(\mathrm{x}_{\mathrm{i}-1}\right)=\underline{\underline{3 \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)}}+3 f^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right)(h)^{2}+\frac{\frac{f^{(3)}\left(\zeta_{1}\right)}{3!}(2 h)^{3}-2 \frac{f^{(3)}\left(\zeta_{2}\right)}{3!}(h)^{3}}{\underline{3!}} \\
& \mathrm{f}\left(\mathrm{x}_{\mathrm{i}+1}\right)+2 \mathrm{f}\left(\mathrm{x}_{\mathrm{i}-1}\right)=\underline{\underline{3 \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)}}+3 f^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right)(h)^{2}+\underline{\underline{O(h)^{3}}} \\
& f^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right)=\frac{\mathrm{f}\left(\mathrm{x}_{\mathrm{i}+1}\right)+2 \mathrm{f}\left(\mathrm{x}_{\mathrm{i}-1}\right)-3 \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)-O(h)^{3}}{3 h^{2}} \Rightarrow \\
& f^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right)=\frac{\mathrm{f}\left(\mathrm{x}_{\mathrm{i}+1}\right)+2 \mathrm{f}\left(\mathrm{x}_{\mathrm{i}-1}\right)-3 \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)}{3 h^{2}}+O(h)
\end{aligned}
$$

thus the order of the truncation error is $\mathrm{O}(\mathrm{h})$

Sample solution, Prob. 3 (Thanks to Elie Chmouni)
$\underline{\text { Choose } \mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}+1}, \mathrm{x}_{\mathrm{i}+2}}$
STEP\#1
(L1) $\mathrm{F}\left(\mathrm{x}_{\mathrm{i}+1}\right)=F\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{F}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right) \mathrm{h}+\frac{\mathrm{F}^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right)}{2} h^{2}+\frac{F^{\prime \prime \prime}\left(x_{i}\right)}{6} h^{3}+\frac{F^{(4)}\left(x_{i}\right)}{24} h^{4}+\ldots$
(L2) $\mathrm{F}\left(\mathrm{x}_{\mathrm{i}-1}\right)=F\left(\mathrm{x}_{\mathrm{i}}\right)-\mathrm{F}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right) \mathrm{h}+\frac{\mathrm{F}^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right)}{2} h^{2}-\frac{F^{\prime \prime \prime}\left(x_{i}\right)}{6} h^{3}+\frac{F^{(4)}\left(x_{i}\right)}{24} h^{4}+\ldots$

L3=L1-L2

(L3) $\mathrm{F}\left(\mathrm{x}_{\mathrm{i}+1}\right)-\mathrm{F}\left(\mathrm{x}_{\mathrm{i}-1}\right)=2 \mathrm{~F}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right) \mathrm{h}+\frac{F^{\prime \prime \prime}\left(x_{i}\right)}{3} h^{3}+\mathrm{O}\left(h^{5}\right)$

Step \# 2

(L2) $\mathrm{F}\left(\mathrm{x}_{\mathrm{i}-1}\right)=F\left(\mathrm{x}_{\mathrm{i}}\right)-\mathrm{F}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right) \mathrm{h}+\frac{\mathrm{F}\left(\mathrm{x}_{\mathrm{i}}\right)}{2} h^{2}-\frac{F^{\prime \prime \prime}\left(x_{i}\right)}{6} h^{3}+\frac{F^{(4)}\left(x_{i}\right)}{24} h^{4}+\ldots$
$(L 4) \mathrm{F}\left(\mathrm{x}_{\mathrm{i}+2}\right)=F\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{F}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right)(2 \mathrm{~h})+\frac{\mathrm{F}^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right)}{2}(2 h)^{2}+\frac{F^{\prime \prime \prime}\left(x_{i}\right)}{6}(2 h)^{3}+\frac{F^{(4)}\left(x_{i}\right)}{24}(2 h)^{4}+\ldots$
(L5) $=(\mathrm{L} 4)-4(\mathrm{~L} 2)$
(L5) $\mathrm{F}\left(\mathrm{x}_{\mathrm{i}+2}\right)-4 \mathrm{~F}\left(\mathrm{x}_{\mathrm{i}-1}\right)=-3 F\left(\mathrm{x}_{\mathrm{i}}\right)+6 \mathrm{~F}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right) \mathrm{h}+2 F^{\prime \prime \prime}\left(x_{i}\right) h^{3}+0.5 F^{(4)}\left(x_{i}\right) h^{4}$

Step \#3

(L6) $=6$ (L3)-(L5)
$6 \mathrm{~F}\left(\mathrm{x}_{\mathrm{i}+1}\right)-6 \mathrm{~F}\left(\mathrm{x}_{\mathrm{i}-1}\right)=12 \mathrm{~F}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right) \mathrm{h}+2 \mathrm{~F}^{\prime \prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right) h^{3}+O\left(h^{5}\right)$
$-\mathrm{F}\left(\mathrm{x}_{\mathrm{i}+2}\right)+4 \mathrm{~F}\left(\mathrm{x}_{\mathrm{i}-1}\right)=3 F\left(\mathrm{x}_{\mathrm{i}}\right)-6 \mathrm{~F}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right) \mathrm{h}-2 F^{\prime \prime \prime}\left(x_{i}\right) h^{3}-0.5 F^{(4)}\left(x_{i}\right) h^{4}$
(L6) $6 \mathrm{~F}\left(\mathrm{x}_{\mathrm{i}+1}\right)-2 \mathrm{~F}\left(\mathrm{x}_{\mathrm{i}-1}\right)-\mathrm{F}\left(\mathrm{x}_{\mathrm{i}+2}\right)=3 F\left(\mathrm{x}_{\mathrm{i}}\right)+6 \mathrm{~F}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right) \mathrm{h}-0.5 F^{(4)}\left(x_{i}\right) h^{4}$

Thus solving for the first derivative $\mathrm{F}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right)$
$\mathrm{F}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right)=\frac{6 \mathrm{~F}\left(\mathrm{x}_{\mathrm{i}+1}\right)-2 \mathrm{~F}\left(\mathrm{x}_{\mathrm{i}-1}\right)-\mathrm{F}\left(\mathrm{x}_{\mathrm{i}+2}\right)-3 F\left(\mathrm{x}_{\mathrm{i}}\right)}{6 h}+O\left(h^{3}\right)$

Sample solution, Prob. 4 (version 1, solved by hand) (Thanks to Chelsea Dickkut)

 Evaluate the integral $I=\int_{0}^{6} \sin (4 x) d x$ using(i) Trapezoidal method
(ii) Simpson's $1 / 3$ method

Assume $h=0.5$. Compare the numerical results with the exact value obtained from the analytic expression of I. Determine which numerical method provides the better answer.

$$
\operatorname{Eqn}(7,12)
$$

$$
h=\frac{b-a}{N} \quad N=12
$$

$$
\begin{equation*}
I(f)=\int_{a}^{b} f(x) d x \doteq \frac{h}{2}[f(a)+f(b)]+h \sum_{i=2}^{N-1} f\left(x_{i}\right) \tag{i}
\end{equation*}
$$

$$
I(f)=\frac{0.5}{2}[\sin (4.0)+\sin (4.6)]+0.5 \sum_{i=2}^{11} f\left(x_{i}\right)
$$

$$
\begin{aligned}
\sum_{i=2}^{\prime \prime} f\left(x_{i}\right)= & \sin (4)+\sin (6)+\sin (8)+\sin (10)+\sin (12)+\sin (14) \\
& +\sin (16)+\sin (18)+\sin (20)+\sin (22)+\sin (12)
\end{aligned}
$$

$$
=0.6376543847
$$

$$
I(f)=-0.2263945905+0.5(0.6376543847)=0.0924326019=I
$$

$$
\operatorname{Ean} \cdot(7.19)
$$

$$
\text { (ii) } I(f)=\int_{a}^{b} f(x) d x=\frac{h}{3}\left[f(a)+4 \sum_{i=2,4,6}^{12} f\left(x_{i}\right)+2 \sum_{j=3,5,7}^{11} f\left(x_{j}\right)+f(b)\right]
$$

$$
\sum_{i=2,4,6}^{12} f\left(x_{i}\right)=\sin (2)+\sin (6)+\sin (10)+\sin (14)+\sin (18)+\sin (22)
$$

$$
=0.3166296174
$$

$$
\begin{aligned}
\sum_{j=3,5,7}^{11} f\left(x_{j}\right) & =0.3166296174 \\
& =0.3210247674
\end{aligned}
$$

$$
=0.3210247674
$$

$$
I(f)=\frac{0.5}{3}[0+4(0.3166296174)+2(0.3210247674)+\sin (6.4)]
$$

$$
I=0.1671649404
$$

Exact value: $I=\int_{0}^{6} \sin (4 x) d x=\left.\frac{-1}{4} \cos (4 x)\right|_{0} ^{6}=0.143955248166=I$
error for
trapezoidal $:\left|\frac{0.143955248166-0.0924326019}{0.143955248166}\right|=35.79 \%$
$\begin{aligned} & \text { error for } \\ & \text { Simpson's } 1 / 3\end{aligned}\left|\frac{0.143955248166-01671649404}{0.143955248166}\right|=16.12 \%$
The Simpson's $1 / 3$ method provides the better answer.

Sample solution, Prob. 4 (version 2, using Matlab) (Thanks to Shane Mello)
(i)Trapezoidal Method
$h=0.5$;
$\mathrm{x}=\mathrm{h}$;
$I=h / 2 *(\sin (4 * 0)+\sin (4 * 6)) ;$
while $x<6$
$I=I+h * \sin (4 * x) ;$ $x=x+h ;$
end
I
(ii)Simpson's $1 / 3$ Method
h = 0.5;
$I=h / 3 *(\sin (4 * 0)+\sin (4 * 6))$;
$\mathrm{x}=\mathrm{h}$;
while $x<6$
$I=I+h / 3 * 4 * \sin (4 * x) ;$ $x=x+2 * h ;$
end
$x=2 * h$;
while $x<6$
$I=I+h / 3 * 2 * \sin (4 * x) ;$
$x=x+2 * h ;$
end
I
\%define h
\%initialize x
\%initialize I
\%define h
\%initialize I
\%initialize x
\%perform even subintervals
\%reset x
\%perfom odd subintervals

