Sample solution, Prob 1(a)
Prob 1 (a)

$$
\frac{d u}{d x}=f(x, u), \quad f(x, u) \equiv-u^{2}+\sin x, \quad u(0)=0
$$

Euler's explicit method, $\Delta x=0.1$:

$$
\begin{array}{rl}
u_{1} & =u_{0}+f\left(x_{0}, u_{0}\right) \Delta x \\
& =\left(-u^{2}(0)+\sin (0)\right) \cdot(0.1)=0 \\
0 & 0
\end{array}
$$

$$
\begin{aligned}
u_{2} & =u_{1}+f\left(x_{1}, u_{1}\right) \cdot \Delta x \\
& =0+\left(-u_{1}^{2}+\sin \left(x_{1}\right)\right) \cdot(0.1) \\
& =0+(0+\sin (0.1)) \cdot(0.1)=0.00998334
\end{aligned}
$$

$$
\begin{aligned}
u_{3} & =u_{2}+f\left(x_{2}, u_{2}\right) \cdot \Delta x \\
& =0.00998334+\left(-(0.00998334)^{2}+\sin (0.2)\right) \cdot(0.1) \\
& =0.0298403 \\
u_{4} & =u_{3}+f\left(x_{3}, u_{3}\right) \cdot \Delta x \\
& =0.0298403+\left(-(0.0298403)^{2}+\sin (0.3)\right) \cdot(0.1) \\
& =0.0593032
\end{aligned}
$$

Sample solution, Prob 1(b)

$$
\frac{d u}{d x}=f(x, u), \quad f(x, u) \equiv-u^{2}+\sin x, \quad u(0)=0
$$

th oreter $R-k$ method; $\Delta x=0,2$:

$$
u_{1}=u_{0}+\frac{\Delta x}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \quad x=0 \quad x_{0} \quad x_{1} \quad 0.2 \quad 0.4
$$

Where $K_{1}=f\left(x_{0}, u_{0}\right)$

$$
=-2 x_{0}^{2}+\sin x_{0}=-x^{2}(0)+\sin (0)=0
$$

$$
K_{2}=f\left(x_{0}+\frac{1}{2} \Delta x, u_{0}+\frac{1}{2} K_{1} \cdot \Delta x\right)
$$

$$
=-\left(U_{0}+\frac{1}{2} k_{1} \Delta x\right)^{2}+\sin \left(x_{0}+\frac{1}{2} a x\right)
$$

$$
=-\left(0+\frac{1}{2} 0 \cdot(0.2)\right)^{2}+\sin \left(0+\frac{1}{2} \cdot 0.2\right)
$$

$$
=\sin (0.1)=0.0998334
$$

$$
k_{3}=f\left(x_{0}+\frac{1}{2} \Delta x, 2 x_{0}+\frac{1}{2} k_{2} \cdot \Delta x\right)
$$

$$
=-\left(u_{0}+\frac{1}{2} k_{2} \Delta x\right)^{2}+\sin \left(x_{0}+\frac{1}{2} \Delta x\right)
$$

$$
=-\left[\frac{1}{2} \cdot(0.09983) \cdot(0.2)\right]^{2}+\sin (0.1)
$$

$$
=-0.00009966+0.0998334
$$

$$
=0.0997337
$$

$$
k_{4}=f\left(x_{0}+\Delta x, u_{0}+k_{3} \Delta x\right)
$$

$$
=-\left(u_{0}+k_{3} \Delta x\right)^{2}+\sin \left(x_{0}+\Delta x\right)
$$

$$
=-(0.0997337 \times 0.2)^{2}+\sin (0.2)
$$

$$
=-0.00039787+0.1986693
$$

$$
=0.1982714
$$

$$
\begin{aligned}
U_{1} & =u_{0}^{0}+\frac{0.2}{6}[0+2 \cdot 0.0998334+2 \cdot 0.0997337+0.1982714] \\
& =0.0199135
\end{aligned}
$$

(Prob 1(b) continued to next page)
(Prob 1(b) continued)

$$
u_{2}=u_{1}+\frac{\Delta x}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right]
$$

where

$$
\begin{aligned}
& k_{1}=f\left(x_{1}, u_{1}\right)=-u_{1}^{2}+\sin \left(x_{1}\right) \\
& =-(0.0199135)^{2}+\sin (0.2)=0.19827278 \\
& -0,0003965474 \quad 0.19866933 \\
& K_{2}=f\left(x_{1}+\frac{1}{2} \Delta x ; u_{1}+\frac{1}{2} K_{1} \Delta x\right) \\
& =-\left(u_{1}+\frac{1}{2} k_{1} \Delta x\right)^{2}+\sin \left(x_{1}+\frac{1}{2} \Delta x\right) \\
& =-\left(0.0199135+\frac{1}{2} \cdot 0.19827278 \cdot 0.2\right)^{2}+\sin \left(0.2+\frac{1}{2} \cdot 0.2\right) \\
& =-0.001 .5793294+0.295520206 \\
& =0.29394087 \\
& K_{3}=f\left(x_{1}+\frac{1}{2} \Delta x, u_{1}+\frac{1}{2} K_{2} \Delta x\right) \\
& =-\left(u_{1}+\frac{1}{2} k_{2} \Delta x\right)^{2}+\sin \left(x_{1}+\frac{1}{2} \Delta x\right) \\
& =-\left(0.0199135+\frac{1}{2} \cdot(0.2939408) \cdot(0.2)\right)^{2}+\sin (0.3) \\
& =-0.0024312374+0.295520206 \\
& =0.293088969 \\
& k_{4}=f\left(x_{1}+\Delta x, u_{1}+k_{3} \Delta x\right) \\
& =-\left(u_{1}+k_{3} \Delta x\right)^{2}+\sin (x,+\Delta x) \quad 0.38941838_{2} \\
& =-(0.0199135+(0.293088969) \cdot(0.2))^{2}+\sin (0.4) \\
& =-0.0061671641+0.389418342 \\
& =0.38325117 \\
& u_{2}=u_{1}+\frac{0_{1} 2}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \\
& =0.0199135+\frac{0.2}{6}[0.19827278+2 \times 0.29394089 \\
& +2 \times 0.293088569+0.383251173 \\
& =0.07843295
\end{aligned}
$$

Sample solution, Prob 2(a)
Prob 2 (a) Numerical solution
since $\Delta x=0.2$, we have

$$
32.5 u_{i-1}-48 u_{i}+17.5 u_{i+1}=0
$$

(Or, you can multiply a constant to the above equation if you wish).

$$
\begin{array}{ccc}
\Rightarrow 3 z_{0}-48 u_{1}+17.5 u_{2} & & =0 \\
0 & 32.5 u_{1}-48 u_{2}+17.5 u_{3} & 32.5 u_{2}-48 u_{3}+17.5 u_{4} \\
02.5 u_{3}-48 u_{4}+17.5 \mid u_{5} \\
0 & & =0 \\
\Rightarrow\left(\begin{array}{cccc}
-48 & 17.5 & 0 & 0 \\
32.5 & -48 & 17.5 & 0 \\
0 & 32.5 & -48 & 17.5 \\
0 & 0 & 32.5 & -48
\end{array}\right)=0 \\
& =\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
-17.5(1-e)
\end{array}\right)
\end{array}
$$

Solving it, we obtain numerical solution;

$$
\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=(-0.094759,-0.259911,-0.536916,-0.989994)
$$

$$
\text { along with } u_{0}=0 \text { and } u_{5}=1-e=-1.71828
$$

$$
\begin{aligned}
& \frac{d^{2} u}{d x^{2}}-3 \frac{d u}{d x}+2 u=0 \quad u(0)=0 \quad u(1)=1-e \\
& \frac{d^{2} u_{1}}{d x^{2}} \approx \frac{u_{i-1}-2 u_{i}+u_{i+1}}{(\Delta x)^{2}} \quad \begin{array}{l}
x=0,1, \Delta x=0,2, v_{1}, \\
u_{0}, u_{1} u_{2} u_{3} u_{4}
\end{array} \quad x=1 \\
& \frac{d u}{d x} \approx \frac{u_{i+1}-u_{i-1}}{2 \Delta x} \\
& \Rightarrow \quad \frac{u_{i-1}-2 u_{i}+u_{i+1}}{(\Delta x)^{2}}-3 \frac{u_{i+1}-u_{i-1}}{2 \Delta x}+2 u_{i}=0 \\
& \Rightarrow \quad\left(\frac{1}{(\Delta x)^{2}}+\frac{3}{2 \Delta x}\right) u_{i-1}+\left(2-\frac{2}{(\Delta x)^{2}}\right) u_{i}+\left(\frac{1}{(\Delta x)^{2}}-\frac{3}{2 \Delta x}\right) u_{i+1}=0
\end{aligned}
$$

Sample solution, Prob 2(b), analytic solution + remarks

$$
\begin{aligned}
& \quad \frac{d^{2} u}{d x^{2}}-3 \frac{d u}{d x}+2 u=0 \quad u(0)=0 \quad u(1)=1-e \\
& \text { assume } u \alpha e^{\alpha x} \\
& \Rightarrow \alpha^{2}-3 \alpha+2=0 \quad \Rightarrow \quad \alpha=1,2 \\
& \Rightarrow \quad u(x)=A e^{x}+B e^{2 x}
\end{aligned}
$$

$u \sin \delta$ boundary condition $u(0)=0 \Rightarrow A+B=0 \quad B=-A$
using boundary condition $u(1)=1-e$

$$
\begin{aligned}
& \Rightarrow A e-A e^{2}=1-e \\
\Rightarrow \quad u(x) & =e^{-1} e^{x}-e^{-1} e^{2 x}
\end{aligned}
$$

or $\quad u(x)=e^{x-1}-e^{2 x-1}$
In the attached plot, analytic solution is the solid curve. Numerical solution is in circle.

* Note: The matrix for the numerical solution in part (a) is not unique. If you wish, you can multiply the matrix [A], and the vector in the right hand side $[b]$, by a constant and the solution is still the same.

Problem 2(b) plot. The abscissa is x. Solid curve = analytic colution; Circles = numerical solution

Sample solution, Prob 3
Solve $y \frac{\partial u}{\partial x}+x \frac{\partial u}{\partial y}=0$
let $u(x, y)=G(x) H(y)$

$$
\begin{aligned}
& \Rightarrow \quad y H \frac{d G}{d x}+x G \frac{d H}{d y}=0 \\
& \Rightarrow \quad \frac{1}{x G} \frac{d G}{d x}=-\frac{1}{y H} \frac{d H}{d y}=c
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\frac{1}{x G} \frac{d G}{d x}=c \\
\frac{1}{y H} \frac{d H}{d y}=-c
\end{array}\right.
$$

$$
\begin{aligned}
& \text { This is } \\
& \text { unimportant }
\end{aligned}
$$

$$
k_{1}=e^{k_{1}^{*}}
$$

From (1): $\frac{1}{G} \frac{d G}{d x}=c x \quad \frac{d \ln G}{d x}=e x$

$$
\Rightarrow \ln G=\frac{c}{2} x^{2}+k_{1}^{*} \Rightarrow G(x)=k, e^{\frac{c}{2} x^{2}}
$$

Similarly, from (z): $H(y)=k_{2} e^{-\frac{c}{2} y^{2}}$

$$
\Rightarrow \quad u(x, y)=G(x) H(y)=k e^{\frac{c}{2}\left(x^{2}-y^{2}\right)}
$$

Sample solution, Prob 4

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=A \frac{\partial^{3} u}{\partial x^{3}}-0,1 u \\
& \frac{\partial u}{\partial t} \approx \frac{u_{i, j+1}-u_{i, j}}{\Delta t} \\
& \frac{\partial^{3} u}{\partial x^{3}} \approx \frac{-u_{i-2, j}+2 u_{i-1, j}-2 u_{i+1, j}+u_{i+2, j}}{2(\Delta x)^{3}} \\
\Rightarrow & \frac{u_{i, j+1}-u_{i, j}}{\Delta t}=A \frac{-u_{i-2, j}+2 u_{i-1, j}-2 u_{i+1, j}+u_{i+2, j}}{2(\Delta x)^{3}}-0,1 u_{i, j} \\
\Rightarrow & u_{i, j+1}=-\left(\frac{A \Delta t}{2(\Delta x)^{3}}\right) u_{i-2, j}+2\left(\frac{A \Delta t}{2(\Delta x)^{3}}\right) u_{i-1, j}+(1-0,1 \Delta t) u_{i, j} \\
& -2\left(\frac{A \Delta t}{2(\Delta x)^{3}}\right) u_{i+1, j}+\left(\frac{A \Delta t}{2(\Delta x)^{3}}\right) u_{i+2, j},
\end{aligned}
$$

written as:

$$
u_{i, j+1}=P u_{i-2, j}+Q u_{i-1, j}+R u_{i, j}+S u_{i+j}+T u_{i+2, j}
$$

with $A=0.8 \quad \Delta x=0.2 \quad \Delta t=0.1=$

$$
\begin{aligned}
& P=-\left(\frac{A \Delta t}{2(\Delta x)^{3}}\right)=-5 \\
& Q=2\left(\frac{A \Delta t}{2(\Delta x)^{3}}\right)=10 \\
& R=(1-0.1 \Delta t)=0.99 \\
& S=-2\left(\frac{A \Delta t}{2(\Delta x)^{3}}\right)=-10 \\
& T=\left(\frac{A \Delta t}{2(\Delta x)^{3}}\right)=5
\end{aligned}
$$

(Prob 4 continued to next page)
(Prob 4 continued)

The main equation to use is.

$$
u_{i, j+1}=-5 u_{i-2, j}+10 u_{i-1, j}+0.99 u_{i, j}-10 u_{6+1, j}+5 u_{i+2},
$$

bounding conditions $\quad U_{4,0}=1 \quad u_{5}, 0=0,5$
at $\quad i=1 \quad(t=0.1)=$

$$
\begin{aligned}
& u_{2,1}=5 u_{4,0}=5 \\
& u_{3,1}=-10 u_{4,0}+5 u_{5,0}=-7.5 \\
& u_{4,1}=0,99 u_{4,0}-10 u_{5,0}=-4.01 \\
& u_{5,1}=10 u_{4,0}+0.99 u_{5,0}=10.495 \\
& u_{6,1}=-5 u_{4,0}+10 u_{5,0}=0 \\
& u_{7,1}=-5 u_{5,0}=-2.5
\end{aligned}
$$

All other Wig at $g=1$ are zero.
$a t j^{2}=2 \quad(t=0.2)$

$$
\begin{aligned}
& u_{0,2}=5 u_{2,1}=25 \\
& u_{1,2}=-10 u_{2,1}+5 u_{3,1}=-87,5 \\
& u_{2,2}=0,99 u_{2,1}-10 u_{3,1}+5 u_{4,1}=59.9 \\
& u_{3,2}=10 u_{2,1}+0,99 u_{3,1}-10 u_{4,1}+5 u_{5,1}=135.15 \\
& u_{4,2}=-5 u_{2,1}+10 u_{3,1}+0.99 u_{4,1}-10 u_{5,1}+5 u_{6,1}=-208.9199 \\
& u_{5,2}=-5 u_{3,1}+10 u_{4,1}+0,99 u_{5,1}-10 u_{6,1}+5 u_{7,1}=-4.70995 \\
& u_{6,2}=-5 u_{4,1}+10 u_{5,1}+0.99 u_{6,1}-10 u_{7,1}=150 \\
& u_{7,2}=-5 u_{5,1}+10 u_{6,1}+0.99 u_{17,1}=-54,95 \\
& u_{8,2}=-5 u_{6,1}+10 u_{7,1}=-25 \\
& u_{9,2}=-5 u_{7,1}=12.5
\end{aligned}
$$

All other ui,j at $j=2$ are zero.
(see next page for plot at $t=0.2$)

Prob 4, plot. The abscissa is the index " i ". Shown is $\mathrm{u}_{i, 2}$ for $i=0,1,2, \ldots, 10$.

