MAE502 Spring 2010 Homework \#5

Problem 1 (5 points)

(a) Solve the heat equation with an internal source,

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+Q(x, t), Q(x, t) \equiv-\mathrm{B} \cos (2.5 \pi x) \cos (20 t) \text { (B is a constant), }
$$

for $u(x, t)$ defined within the domain of $0 \leq x \leq 1$ and $t \geq 0$, given the following boundary conditions
(i) $u_{x}(0, t)=0$ (Note: $u_{x} \equiv \partial u / \partial x$)
(ii) $u(1, t)=0$
(iii) $u(x, 0)=3 \cos (0.5 \pi x)+2 \cos (2.5 \pi x)$,
(b) For each of the three cases with $\mathrm{B}=0,50$, and 500 , evaluate and plot your solutions for $t=0,0.02,0.1$, and 0.5 . Discuss your results.

Note that the b.c.'s (i) and (ii) are identical to those for HW2 Prob 1. The eigenvalues and eigenfunctions in x from that problem can be recycled here; no need to repeat the detail.

Prob 2 (2 points)

Consider the eigenvalue problem,

$$
\sin (x) u^{\prime \prime}+\cos (x) u^{\prime}+\mathrm{e}^{x} u=\lambda x^{2} u,
$$

with the boundary conditions,

$$
\text { (i) } u^{\prime}(0.5)=0 \text {, (ii) } u(1.5)=0 \text {, }
$$

where $u^{\prime \prime} \equiv \mathrm{d}^{2} u / \mathrm{d} x^{2}, u^{\prime} \equiv \mathrm{d} u / \mathrm{d} x$, and λ is the eigenvalue. Are the eigenfunctions of this problem orthogonal (in the sense defined in Sec. 5.3 in the textbook)? That is, are any two eigenfunctions $u_{\mathrm{p}}(x)$ and $u_{\mathrm{q}}(x)$ corresponding to eigenvalues p and q orthogonal to each other if $\mathrm{p} \neq \mathrm{q}$? If no, explain why. If yes, describe what the orthogonality relation for $u_{\mathrm{p}}(x)$ and $u_{\mathrm{q}}(x)$ should be for this system. You do not have to explicitly solve for the eigenvalues and eigenfunctions to reach the conclusion.

