MAE502 Spring 2010 Homework \#6

Problem 1 (4 points)

This is a repeat of HW2 Prob 2 but we wish to use the numerical (finite difference) method in Chapter 6 to solve Laplace's equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

for $u(x, y)$ defined within the domain of $0 \leq x \leq 1$ and $0 \leq y \leq 1$, given the following boundary conditions,
(i) $u(0, y)=\sin (\pi y)+0.5 \sin (2 \pi y)$
(ii) $u(1, y)=0$
(iii) $u(x, 0)=0$
(iv) $u(x, 1)=8\left(x-x^{2}\right)$.

To proceed, discretize the 2nd partial derivatives in both x and y by using the 2nd order centered finite difference scheme (e.g., see Eqs. 6.2.15-6.2.17 in textbook). Then, find the numerical solutions for $u(x, y)$ for the two cases with $(\Delta x=0.1, \Delta y=0.1)$ and $(\Delta x=0.25, \Delta y=0.25)$. Plot each of the solutions as a contour and/or color map in the same fashion as you did for the analytic solution for HW2 Prob 2. For both cases, calculate $u(x, t)$ at $x=0.5, y=0.5$ and compare the values with that obtained from the analytic solution in HW2 Prob 2. (Note: Your discretized equation set will be equivalent to a standard system of linear equations. For a large system, iterative methods such as those in Sec. 6.6 are useful. In our cases, the system is small enough that a direct solution of the matrix problem using the Matlab operation alb will also work.)

Problem 2 (4 points)
(a) Using the method of characteristics, solve the nonlinear (or "quasilinear") PDE,

$$
\frac{\partial u}{\partial t}+2 u \frac{\partial u}{\partial x}=0
$$

for $u(x, t)$ defined on $-\infty<x<\infty$ and $0 \leq t<\infty$, given the boundary condition

$$
u(x, 0)=\mathrm{P}(x)
$$

where

$$
\begin{aligned}
\mathrm{P}(x) & =1 & & , x<0 \\
& =1+x^{2} & & , 0 \leq x \leq 1 \\
& =2 & & , x>1 .
\end{aligned}
$$

Using your solution, evaluate $u(x, t)$ at $(x=1, t=0.05)$ and $(x=0.1, t=0.1)$.
(b) Plot the solution, $u(x, t)$, at $t=0.1$ and $t=0.2$, along with the "initial state", $u(x, 0)=\mathrm{P}(x)$. Briefly discuss the behavior of the solution.

