MAE502 2011 Homework \#5

Prob 1 (3 points)

For $u(x, t)$ defined on $0 \leq x \leq 1$ and $t \geq 0$, solve the nonhomogeneous PDE

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\cos (\pi x) \mathrm{e}^{-2 t}+\cos (3 \pi x) \mathrm{e}^{-t}
$$

with boundary conditions

$$
\begin{array}{lll}
\text { (I) } u_{x}(0, t)=0 & \text { (II) } u_{x}(1, t)=0 \quad\left(u_{x} \text { is } \partial u / \partial x\right)
\end{array}
$$

$$
\text { (III) } u(x, 0)=5 \cos (2 \pi x)+2 \cos (3 \pi x)
$$

Use the solution to evaluate $u(x, t)$ at $(x, t)=(0.6,0.1)$ and $(0.6,0.3)$.

Prob 2 (4 points)

(a) For $u(x, t)$ defined on the infinite domain, $-\infty<x<\infty$, and $t \geq 0$, use Fourier transform method to solve the nonhomogeneous PDE

$$
\frac{\partial u}{\partial t}=-0.05 \frac{\partial^{4} u}{\partial x^{4}}+q(x, t)
$$

with boundary conditions
(I) $u(x, t)$ and all its partial derivatives in x vanish as $x \rightarrow \infty$ and $x \rightarrow-\infty$.
(II) $u(x, 0)=P(x)$,
where

$$
\begin{aligned}
q(x, t) & \equiv \mathrm{R}(x) \mathrm{S}(t) \\
\mathrm{R}(x) & =-1 \text { if }-2 \leq x \leq-1 \\
& =0 \text { otherwise }, \\
\mathrm{S}(t) & =1 \text { if } t \leq 1 \\
& =0 \text { if } t>1,
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{P}(x) & =1 \text { if } 1 \leq x \leq 2 \\
& =0 \text { otherwise }
\end{aligned}
$$

(b) Evaluate and plot your solution as a function of x for $t=0.3,0.6,1.0,1.2$, and 1.5. (This part is important and will account for at least 50% of the score.)

