MAE502 2011 Homework #5

Prob 1 (3 points)

For u(x,t) defined on $0 \le x \le 1$ and $t \ge 0$, solve the nonhomogeneous PDE

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \cos(\pi x) e^{-2t} + \cos(3\pi x) e^{-t} ,$$

with boundary conditions

(I)
$$u_x(0, t) = 0$$
 (II) $u_x(1, t) = 0$ ($u_x \text{ is } \partial u/\partial x$)
(III) $u(x,0) = 5 \cos(2\pi x) + 2 \cos(3\pi x)$.

Use the solution to evaluate u(x,t) at (x,t) = (0.6, 0.1) and (0.6, 0.3).

Prob 2 (4 points)

(a) For u(x,t) defined on the infinite domain, $-\infty < x < \infty$, and $t \ge 0$, use Fourier transform method to solve the nonhomogeneous PDE

$$\frac{\partial u}{\partial t} = -0.05 \frac{\partial^4 u}{\partial x^4} + q(x,t) ,$$

with boundary conditions

- (I) u(x, t) and all its partial derivatives in x vanish as $x \to \infty$ and $x \to -\infty$.
- (II) u(x,0) = P(x),

where

```
q(x,t) \equiv R(x)S(t),
R(x) = -1 \quad \text{if } -2 \le x \le -1
= 0 \quad \text{otherwise},
S(t) = 1 \quad \text{if } t \le 1
= 0 \quad \text{if } t > 1,
and
P(x) = 1 \quad \text{if } 1 \le x \le 2
= 0 \quad \text{otherwise}
```

(b) Evaluate and plot your solution as a function of x for t = 0.3, 0.6, 1.0, 1.2, and 1.5. (This part is important and will account for at least 50% of the score.)