MAE502 2011 Homework \#6

Prob 1 (3 points)
Solve the PDE for $u(x, t)$ defined on the infinite domain, $-\infty<x<\infty$, and $t \geq 0$,

$$
\frac{\partial u}{\partial t}+t u \frac{\partial u}{\partial x}=0
$$

with the boundary condition

$$
u(x, 0)=\mathrm{P}(x)
$$

where

$$
\begin{aligned}
\mathrm{P}(x) & =1 & & , \text { if } x<0 \\
& =1+x & & \text { if } 0 \leq x \leq 1 \\
& =2 & & , \text { if } x>1 .
\end{aligned}
$$

Plot the solution as a function of x for $t=1$ and $t=2$, along with the initial state $(t=0)$. Sketch the characteristics in the $x-t$ plane.

Prob 2 (4 points)
Solve the PDE for $u(x, t)$ defined on the infinite domain, $-\infty<x<\infty$, and $t \geq 0$,

$$
\frac{\partial u}{\partial t}+3 u \frac{\partial u}{\partial x}=t
$$

with the boundary condition

$$
u(x, 0)=\mathrm{P}(x)
$$

where

$$
\begin{aligned}
\mathrm{P}(x) & =1 & & \text {, if } x<0 \\
& =2 & & , \text { if } x>0 .
\end{aligned}
$$

See diagram below. (At $x=0, \mathrm{P}(x)$ has all the values between 1 and 2 ; see a relevant example in pp . 565-566) Plot the solution as a function of x for $t=1$ and $t=2$, along with the initial state $(t=0)$. Sketch the characteristics in the x - t plane. What are the values of $u(x, t)$ at $(x=27, t=3)$ and $(x=11$, $t=1.5)$?

