MAE/MSE 502 Spring 2012 Homework \#4

Prob 1 (1 point)

An engineering problem is defined on the interval of $1 \leq x \leq 2$ and for $t \geq 0$. It is governed by the following PDE and boundary conditions,

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+3 x^{2} \frac{\partial^{2} u}{\partial x^{2}}+6 x \frac{\partial u}{\partial x}+\mathrm{e}^{-x} u=0 \\
& u(1, t)=0, u(2, t)=0, u(x, 0)=\mathrm{P}(x)
\end{aligned}
$$

where $\mathrm{P}(x)$ is a well-behaved function. (The detail of $\mathrm{P}(x)$ is not critical here.) Suppose that you are given a software that solves the standard Sturm-Liouville eigenvalue problem. Describe your strategy to solve the PDE assisted by that software. (Sketch the procedure for an end-to-end solution.)

Prob 2 (1 point)

(a) Given the following function defined on the semi-infinite interval, $0 \leq x<\infty$,

$$
\begin{align*}
f(x) & =1,0 \leq x \leq 1, \tag{1}\\
& =0,1<x,
\end{align*}
$$

determine the Fourier Sine transform of $f(x), F(\omega)$, that satisfies

$$
f(x)=\int_{0}^{\infty} F(\omega) \sin (\omega x) d \omega
$$

Plot $F(\omega)$ as a function of ω for the range $0 \leq \omega \leq 30$.
(b) If the $f(x)$ in Eq. (1) is instead defined on a finite interval, $0 \leq x \leq L$ (but otherwise retains its definition in Eq. (1); we now have $f(x)=0$ for $1<x \leq L$), find the coefficients, a_{n}, for the Fourier Sine series of $f(x)$,

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Plot a_{n} as a function of n for the following cases: (i) For $L=2$, plot a_{n} for the range $1 \leq n<60 / \pi$. (ii) For $L=5$, plot a_{n} for $1 \leq n<150 / \pi$. (iii) For $L=100$, plot a_{n} for $1 \leq n<3000 / \pi$. Compare these plots with the plot of $F(\omega)$ in (a). Discuss your results. (Note: This homework illustrates the correspondence between Fourier series and Fourier integral.)

Prob. 3 (5 points)

(a) Using the Fourier transform method, solve the modified Heat equation defined on the infinite interval, $-\infty<x<\infty$,

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-0.01 \frac{\partial^{4} u}{\partial x^{4}}
$$

with the given the boundary conditions:
(I) $u(x, t)$ and all of its partial derivatives in $x\left(u_{x}, u_{x x}\right.$, etc.) vanish as $x \rightarrow \infty$ and $x \rightarrow-\infty$.
(II) $u(x, 0)=\mathrm{P}(x)$, where

$$
\begin{array}{rlrl}
\mathrm{P}(x) & =1+x, \quad-1 \leq x \leq 0 \\
& =1-x, & & 0<x \leq 1 \\
& =0.5, & & 2 \leq x \leq 3 \\
& =0, & & \text { otherwise } .
\end{array}
$$

(b) Using your solution, evaluate and plot $u(x, t)$ as a function of x at $t=0.1,0.3$, and 1 . As a reference, please also plot the initial state $u(x, 0)=\mathrm{P}(x)$ and collect all 4 curves in one figure. Discuss your results.
Note: Part (b) is important and accounts for at least 50\% of the score. Numerical integration (e.g., by the trapezoidal method) may be needed to evaluate $u(x, t)$. Since numerical integration cannot go all the way to ∞, one has to "truncate" the integral at a finite value of ω. This is analogous to truncating a Fourier series at a finite wavenumber n. A useful way to determine where to truncate the integral is to plot, for a give $t, U(\omega, t)$ (the Fourier transform of $u(x, t)$) as a function of ω and observe how $U(\omega, t)$ decays with ω.
(c) Define $E(t) \equiv \int_{-\infty}^{\infty} u(x, t) d x$, show that

$$
\frac{d E}{d t}=0
$$

In other words, E is "conserved" (it does not change with t).

