MAE/MSE 502 Spring 2012 Homework \#5

Prob 1 (4 points)

For $u(x, t)$ defined on the domain of $0 \leq x \leq 1$ and $t \geq 0$, solve the nonhomogeneous PDE,

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-0.5 u-t+\cos (\pi x) \exp (-2 t)
$$

with the boundary conditions:

$$
\begin{aligned}
& u_{x}(0, t)=0 \quad\left(u_{x} \text { is } \quad \partial u / \partial x\right) \\
& u_{x}(1, t)=0 \\
& u(x, 0)=2+\cos (\pi x)+0.5 \cos (3 \pi x)
\end{aligned}
$$

Evaluate and plot $u(x, t)$ as a function of x at $t=0$ (initial state), $0.1,0.2,0.5$, and 1 .

Prob 2 (4 points)

For $u(x, t)$ defined on the infinite domain of $-\infty<x<\infty$ and $t \geq 0$, solve the nonhomogeneous PDE,

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+Q(x, t)
$$

with the boundary conditions:
(i) u and u_{x} vanish as $x \rightarrow \infty$ and $x \rightarrow-\infty$
(ii) $u(x, 0)=\mathrm{P}(x)$,
where

$$
\begin{aligned}
& Q(x, t) \equiv S(x) \exp (-t), \\
& \begin{aligned}
S(x) & =0.5, \text { if }-1 \leq x \leq 1 \\
& =0, \quad \text { otherwise }
\end{aligned}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{P}(x) & =1, \text { if } 2 \leq x \leq 3 \\
& =0, \text { otherwise }
\end{aligned}
$$

Plot $u(x, t)$ as a function of x at $t=0.2$ and 1 , along with the initial state, $u(x, 0)$.

