## MAE/MSE502 2012 Homework \#6B

Please return the solutions for HW6A and HW6B together

## Prob 1 (3 points)

For $u(x, t)$ defined on the infinite domain, $-\infty<x<\infty$, and $t \geq 0$, solve the PDE,

$$
\frac{\partial u}{\partial t}+t u \frac{\partial u}{\partial x}=-3 u
$$

with the boundary condition

$$
u(x, 0)=\exp \left(-x^{2}\right)
$$

Plot the solution as a function of $x$ for $t=0.2$ and 0.5 , along with the initial state $(t=0)$. Sketch the characteristics in the $x-t$ plane.

## Prob 2 (4 points)

For $u(x, t)$ defined on the infinite domain, $-\infty<x<\infty$, and $t \geq 0$, solve the PDE,

$$
\frac{\partial u}{\partial t}+(u+1) \frac{\partial u}{\partial x}=0
$$

with the boundary condition

$$
u(x, 0)=\mathrm{P}(x)
$$

where

$$
\begin{aligned}
\mathrm{P}(x) & =1 \quad, \text { if } x \leq 0 \\
& =1+x^{2}, \text { if } 0<\mathrm{x} \leq 1 \\
& =2 \quad, \text { if } x>1
\end{aligned}
$$

Plot the solution as a function of $x$ for $t=1$ and 2, along with the initial state $(t=0)$. Sketch the characteristics in the $x$ - $t$ plane. What are the values of $u(x, t)$ at $(x=4, t=1.5)$ and $(x=9, t=2.5)$ ?

## Prob 3 (1 point)

Try to convert the following second-order PDE,

$$
\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial u}{\partial t}+4 \frac{\partial u}{\partial x}-3 u=0
$$

into a set of first-order PDEs. There might be more than one solutions for this problem. You only need to provide one example.

