MAE502 Spring 2013 Homework \#2

Prob 1 (2 points)

Solve the 1-D wave equation for $u(x, t)$ defined on the domain of $0 \leq x \leq 1$ and $t \geq 0$,

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}
$$

with the boundary conditions,
(I) $u(0, t)=0$
(II) $u(1, t)=0$
(III) $u(x, 0)=x-x^{2}+0.1 \sin (2 \pi x)$
(IV) $u_{t}(x, 0)=0 \quad\left(u_{t}\right.$ is $\partial u / \partial t$. $)$

Plot the solution, $u(x, t)$, as a function of x at $t=0,0.3,0.5,0.7,1.0$, and 1.6.

Prob 2 (2 points)

For $u(x, t)$ defined on the domain of $0 \leq x \leq 3$ and $t \geq 0$, consider the modified one-dimensional heat equation,

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+50 u
$$

with the boundary conditions,
(I) $u(0, t)=0$, (II) $u(3, t)=0$, and (III) $u(x, 0)=\mathrm{P}(x)$.
(a) Find the solution for the case with $\mathrm{P}(x) \equiv \sin (4 \pi x)$. Discuss the behavior of the solution as $t \rightarrow \infty$.
(b) Find the solution for the case with $\mathrm{P}(x) \equiv \sin (2 \pi x)+0.5 \sin (5 \pi x)$. Discuss the behavior of the solution as $t \rightarrow \infty$.
(Hint: This is still a homogeneous PDE. The usual procedure of separation of variables and eigenfunction expansion should work.)

Prob 3 (3 points)

Solve the 2-D Laplace's equation defined on the domain of $0 \leq x \leq 1$ and $0 \leq y \leq 1$,

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

with the boundary conditions,
(I) $u(0, y)=0$
(II) $u(1, y)=y-y^{2}+0.1 \sin (2 \pi y)$
(III) $u(x, 0)=0$
(IV) $u(x, 1)=\sin (\pi x)$.

Make a contour/colorfill plot of the solution, $u(x, y)$. The recommended function to use in Matlab is contour or contourf. What is the value of $u(x, y)$ at $x=0.6, y=0.4$?

