MAE 502 Spring 2013 Homework \#5

Prob. 1 (4 points)

For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, use the Fourier transform method to solve the PDE

$$
\frac{\partial u}{\partial t}=-0.02 \frac{\partial^{4} u}{\partial x^{4}}+0.0005 \frac{\partial^{6} u}{\partial x^{6}}
$$

with the boundary condition,

$$
u(x, 0)=\mathrm{P}(x)
$$

where

$$
\begin{aligned}
\mathrm{P}(x) & =1, & & -3 \leq x \leq-1 \\
& =2, & & 1<x \leq 2 \\
& =0, & & \text { otherwise } .
\end{aligned}
$$

Evaluate and plot $u(x, t)$ as a function of x at $t=0.03,0.1$, and 0.3 . As a reference, please also plot the initial state $u(x, 0)=\mathrm{P}(x)$ and collect all 4 curves in one figure.
Note: Numerical integration (e.g., by the trapezoidal method) may be needed to evaluate $u(x, t)$. Since numerical integration cannot go all the way to ∞, one has to "truncate" the integral at a finite value of the "wavenumber" ω. It is part of your job to determine where to make the truncation. A useful way to determine the cutoff is to plot $U(\omega, 0)$ (the Fourier transform of $u(x, 0))$ as a function of ω and observe how it decays with ω.

Prob 2 (2 points)

For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, use the Fourier transform method to find the analytic solution of the PDE,

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

with the boundary condition

$$
u(x, 0)=\exp \left(-x^{2} / 4\right)
$$

Hint: You might find the following formula useful:

$$
\int_{0}^{\infty} \mathrm{e}^{-x^{2}} \cos (2 b x) d x=\frac{\sqrt{\pi}}{2} \mathrm{e}^{-b^{2}}
$$

Prob 3 (3 points)

For $u(x, t)$ defined on the domain of $0 \leq x \leq 1$ and $t \geq 0$, solve the nonhomogeneous PDE,

$$
\frac{\partial u}{\partial t}=0.01 \frac{\partial^{2} u}{\partial x^{2}}+u-\sin (t)+t \cos (3 \pi x)
$$

with the boundary conditions:

$$
\begin{aligned}
& u_{x}(0, t)=0 \quad\left(u_{x} \text { is } \quad \partial u / \partial x\right) \\
& u_{x}(1, t)=0 \\
& u(x, 0)=3+2 \cos (3 \pi x)+\cos (4 \pi x) .
\end{aligned}
$$

Evaluate $u(x, t)$ at $x=0.2, t=0.5$.

