MAE502 Spring 2013 Homework \#6

Prob 1 (3 points)

For $u(x, t)$ defined on the infinite interval, $-\infty<x<\infty$, use the method of characteristics to find the solution of the PDE,

$$
\frac{\partial u}{\partial t}+u^{2} \frac{\partial u}{\partial x}=0
$$

with the boundary condition,

$$
u(x, 0)=\mathrm{P}(x)
$$

where

$$
\begin{array}{rlrl}
\mathrm{P}(x) & =2 & & , \\
& \text { if } x \leq 0 \\
& =2+x & & , \\
& =3 & & \text { if } 0<x \leq 1 \\
& , & \text { if } x>1
\end{array}
$$

Plot the solutions at $t=0.1$ and 0.2 , along with the initial state $u(x, 0)$. Sketch the characteristics in the $x-t$ plane. Also, what are the values of $u(x, t)$ at $(x=3, t=0.5)$ and $(x=100, t=30)$?

Prob 2 (4 points)

For $u(x, t)$ defined on the infinite interval, $-\infty<x<\infty$, use the method of characteristics to find the solution of the PDE,

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=-t
$$

with the boundary condition,

$$
u(x, 0)=\exp \left(-x^{2}\right)
$$

Plot the solution $u(x, t)$ at $t=0.3$, along with the initial state $u(x, 0)$. (It suffices to plot these two curves over the interval of $-3 \leq x \leq 3$.)

Prob 3 (2 points)

For $u(x, t)$ defined on the infinite interval, $-\infty<x<\infty$, use the method of characteristics to find the solution of the PDE,

$$
\frac{\partial u}{\partial t}+t x \frac{\partial u}{\partial x}=0
$$

with the boundary condition,

$$
u(x, 0)=\mathrm{P}(x)
$$

Plot the solutions at $t=1.0$ and 1.5 , along with the initial state $u(x, 0)$, for the following two cases:
(i) $\mathrm{P}(x) \equiv \exp \left(-x^{2}\right)$. (ii) $\mathrm{P}(x) \equiv \exp \left[-(x-1)^{2}\right]$.

Prob 4 (1.5 point)

For $u(t)$ defined on $t \geq 0$, solve the nonlinear ODE,

$$
\frac{d u}{d t}=u-u^{2}
$$

with the initial condition,

$$
u(0)=A . \quad(A \text { is a given constant. })
$$

By setting the $\mathrm{d} u / \mathrm{d} t$ in the ODE to zero, we can readily deduce that there are two possible steady state solutions: $u(\infty)=0$ and $u(\infty)=1$. (i) Find an example of the value of A with which the solution $u(t)$ will approach the steady state solution, $u(\infty)=1$, as $t \rightarrow \infty$. (ii) Find an example of the value of A with which the solution $u(t)$ will approach the steady state, $u(\infty)=0$, as $t \rightarrow \infty$. (iii) Find an example of the value of A with which the solution $u(t)$ will approach neither of the steady states but will instead blow up at a finite time. In this case, predict the precise value of t at which the finite-time blow up occurs. Sketch your solutions for the three examples you provided in (i), (ii), and (iii).

Prob 5 (1.5 point)

For $u(x, t)$ defined on $0 \leq x \leq 1$ and $t \geq 0$, a PDE is given

$$
\frac{\partial u}{\partial t}=-u \frac{\partial u}{\partial x}+5 \frac{\partial^{3} u}{\partial x^{3}}-2 u
$$

with the boundary conditions,
(i) $u(0, t)=u(1, t)$
(ii) $u_{x}(0, t)=u_{x}(1, t)$
(iii) $u_{x x}(0, t)=u_{x x}(1, t)$
(iv) $u(x, 0)=3+\cos (2 \pi x)$.

If the "total energy" of the system is defined as

$$
E(t) \equiv \int_{0}^{1} u(x, t) d x
$$

evaluate $E(t)$ at $t=0.5$.

