## Prob 1

The solution is

$$
u(x, y)=\frac{2}{\sinh (\pi)} \sin (\pi x) \sinh (\pi y)+\frac{1}{\sinh (2 \pi)} \sin (2 \pi x) \sinh (2 \pi y)+\sum_{n=1}^{\infty} a_{n} \sinh (n \pi x) \sin (n \pi y)
$$

where

$$
a_{n}=\frac{1}{\sinh (n \pi)} \frac{\int_{0}^{1} 6\left(y-y^{2}\right) \sin (n \pi y) d y}{\int_{0}^{1}[\sin (n \pi y)]^{2} d y}
$$

Plot:

$u(0.4,0.7)=0.9978$
(This value might vary slightly depending on the number of terms in the infinite series that you keep.)

## Prob 1 Example of Matlab code

```
clear
x = [0:0.01:1];
y = [0:0.01:1];
ntrunc = 30;
for n = 1:ntrunc
    g = 6*(y-y.^2).*sin(n*pi*y);
    h = sin(n*pi*y).^2;
    a(n) = (1/sinh(n*pi))*trapz(y,g)/trapz(y,h);
end
for i = 1:101
for j = 1:101
    x2d(i,j) = x(i);
    y2d(i,j) = y(j);
    ul(i,j) = 0;
    for n = 1:ntrunc
        ul(i,j) = ul(i,j)+a(n)*sinh(n*pi*x(i))*sin(n*pi*y(j));
    end
    u2(i,j) = (2/sinh(pi))*sin(pi*x(i))*sinh(pi*y(j)) + ...
                (1/sinh(2*pi))*sin(2*pi*x(i))*sinh(2*pi*y(j));
    u(i,j) = u1(i,j) +u2(i,j);
end
end
u(41,71)
contourf(x2d,y2d,u,[0:0.1:2.5]);
colorbar
xlabel('x');ylabel('y');title('u(x,y) Contour interval = 0.1')
```


## Prob 2

(a) The solvability condition is satisfied since

$$
\oint(\nabla u) \cdot \boldsymbol{n} d l=\int_{0}^{1} \cos (2 \pi x) d x=0
$$

(b) The solutions are

$$
u(x, y)=B+\frac{\cos (2 \pi x) \cosh (2 \pi y)}{2 \pi \sinh (2 \pi)}
$$

where $B$ can be any constant. Choosing two different values of $B$ (e.g., $B=1$ and $B=1,000,000$ ) would produce two distinctive solutions.

## Prob 3

The solution is

$$
u(x, t)=4 \exp \left[-\left(9 \pi^{2}+100\right)(\exp (t)-1)\right] \sin (3 \pi x)+7 \exp \left[-\left(16 \pi^{2}+100\right)(\exp (t)-1)\right] \sin (4 \pi x)
$$

## Prob 4

(a) All values of c on the real axis $(-\infty<\mathrm{c}<\infty)$, except $\mathrm{c}=-(n \pi / 2)^{2}$ with $n=1,3,5, \ldots$, are eigenvalues. (At those special discrete values of c , the solution blows up.) The eigenfunctions are

$$
\begin{array}{ll}
G_{c}(x)=\frac{3 \cos (\sqrt{-c}(x-1))}{\cos (\sqrt{-c})} & , \text { if } \mathrm{c}<0 \\
G_{c}(x)=3 & , \text { if } \mathrm{c}=0 \\
G_{c}(x)=\frac{3 \cosh (\sqrt{c}(x-1))}{\cosh (\sqrt{c})} & , \text { if } \mathrm{c}>0
\end{array}
$$

Note that we have written the eigenfunctions in a slightly more compact form. For example, for $\mathrm{c}>0$, the eigenfunction can also be written as $G_{c}(x)=3[\cosh (\sqrt{c} x)-\sinh (\sqrt{c} x) \tanh (\sqrt{c})]$, and so on.
(b) Plot:

(c) The orthogonality relation is not satisfied by the eigenfunctions. For example, all eigenfunctions corresponding to $\mathrm{c} \geq 0$ are positive definite. Picking any two eigenfunctions, $G_{p}(x)$ and $G_{q}(x)$ (corresponding to $\mathrm{c}=p$ and $\mathrm{c}=q$ ), from that group, the integral of their product from 0 to 1 is guaranteed to be positive and not zero.
(d) No. If $G_{p}(x)$ is an eigenfunction, it satisfies the first b.c. so $G_{p}(0)=3$. This means $A G_{p}(0)=3 A \neq 3$ (unless $A=1$, which is the trivial case that we ruled out in the question). In other words, $A G_{p}(x)$ violates the first b.c. and cannot be an eigenfunction.

