Prob 1 (3 points)

For $u(x, t)$ defined on the domain of $0 \leq x \leq 1$ and $t \geq 0$, solve the 1 -D Wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}
$$

with the boundary conditions,
(i) $u(0, t)=0$
(ii) $u(1, t)=0$
(iii) $u(x, 0)=\mathrm{P}(x)$
(iv) $u_{t}(x, 0)=0 \quad\left(u_{t}\right.$ is $\left.\partial u / \partial t\right)$,
where

$$
\begin{aligned}
\mathrm{P}(x) & =-x, \\
& =4(x-1), \text { if } 0 \leq x \leq 0.8 \\
& 0.8<x \leq 1
\end{aligned}
$$

Plot the solution at $t=0,0.3,0.5,0.7,1.0$, and 1.8. Please collect all 6 curves in one figure.

Prob 2 (3 points)

For $u(x, t)$ defined on the domain of $2 \leq x \leq 5$ and $t \geq 0$, consider the following PDE and boundary conditions:

$$
\mathrm{e}^{-2 x} \frac{\partial u}{\partial t}=0.5 \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial u}{\partial x}+x^{2} \mathrm{e}^{-2 x} u
$$

(i) $u(2, t)=3 u_{x}(2, t), \quad\left(u_{x}\right.$ is $\left.\partial u / \partial x\right)$
(ii) $u(5, t)=0$,
(iii) $u(x, 0)=\mathrm{P}(x)$,
where $\mathrm{P}(x)$ is a well-behaved function. (The detail of $\mathrm{P}(x)$ is unimportant for this problem.)
(a) Perform separation of variables on the PDE and the first two boundary conditions to obtain an eigenvalue problem in the x-direction (including an ODE and two boundary conditions) and an accompanying ODE in the t-direction. Write them out clearly. Is the eigenvalue problem in the x-direction of the form of a Sturm-Liouville system?
(b) If your answer to the last question in Part (a) is "no", no need to proceed further. If the answer is "yes", and if c_{n} and $G_{n}(x)$ denote the n-th eigenvalue and n-th eigenfunction of the eigenvalue problem in the x-direction, express the final solution, $u(x, t)$, as an eigenfunction expansion in terms of c_{n} and $G_{n}(x)$. Please also provide the formula for evaluating the expansion coefficients when $\mathrm{P}(x)$ is given.

