MAE/MSE 502 Fall 2014, Homework \#4

Prob. 1 (4 points)
(a) For a function defined on the interval of $0 \leq x \leq 1$ given as

$$
\begin{aligned}
f(x) & =2 x, 0 \leq x \leq 1 / 2 \\
& =1-x, 1 / 2<x \leq 1
\end{aligned}
$$

work out its Fourier Cosine series expansion,

$$
F(x) \approx F_{C}(x)=\sum_{n=0}^{\infty} a_{n} \cos (n \pi x)
$$

where $F(x)$ is the even extension of $f(x)$ and $F_{\mathrm{C}}(x)$ denotes the Fourier Cosine series representation of $F(x)$. A sketch of $f(x)$ is shown at right; Notice a discontinuity at $x=1 / 2$.
(b) Plot the original $f(x)$ and its Fourier Cosine series representation, $F_{\mathrm{C}}(x)$, truncated (inclusively) at $n=5,10$, and 30 . Please collect all four curves in a single plot. What are the values of $F_{\mathrm{C}}(x)$ at $x=0.35$ for the three cases truncated at $n=5,10$, and 30? Compare them to the exact value, $f(0.35$), to determine the percentage error (using the exact value as denominator) for the three cases. Repeat the exercise for $x=0.49$ (a point close to the discontinuity). Discuss the results.
(c) Define $S(\mathrm{~N})$ as the value of $F_{\mathrm{C}}(1 / 2)$ calculated from the Fourier Cosine series truncated (inclusively) at $n=\mathrm{N}$, plot $S(\mathrm{~N})$ as a function of N over the range of $1 \leq \mathrm{N} \leq 30$. What value does $S(\mathrm{~N})$ converge to at large N ?

Prob. 2 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE

$$
\frac{\partial u}{\partial t}=\frac{\partial^{5} u}{\partial x^{5}}+\frac{\partial^{2} u}{\partial x^{2}}
$$

with the boundary conditions (the first five simply indicate that the system is periodic in x),
(i) $u(0, t)=u(2 \pi, t)$
(ii) $u_{x}(0, t)=u_{x}(2 \pi, t)$
(iii) $u_{x x}(0, t)=u_{x x}(2 \pi, t)$
(iv) $u_{x x x}(0, t)=u_{x x x}(2 \pi, t)$
(v) $u_{x x x x}(0, t)=u_{x x x x}(2 \pi, t)$
(v) $u(x, 0)=1+\sin (2 x)+\cos (3 x)$.

We expect a closed-form solution without any unevaluated integral or summation of infinite series.

Prob. 3 (3 points)
(a) For $u(x, y, t)$ defined on the domain of $0 \leq x \leq 1,0 \leq y \leq 1$, and $t \geq 0$, solve the modified twodimensional heat equation (be aware of a factor of 4 in the last term),

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+4 \frac{\partial^{2} u}{\partial y^{2}}
$$

with the boundary conditions
(i) $u(0, y, t)=0$
(ii) $u(1, y, t)=0$
(iii) $u(x, 0, t)=0$
(iv) $u(x, 1, t)=0$
(v) $u(x, y, 0)=\sin (2 \pi x) \sin (3 \pi y)$.

We expect a closed-form solution without any unevaluated integral or summation of infinite series.

