MAE/MSE 502, Fall 2014 Homework \#6

Prob 1 (3 points)

For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, find the solution of the PDE,

$$
\frac{\partial u}{\partial t}+(0.5+u) \frac{\partial u}{\partial x}=0
$$

with the boundary condition,

$$
u(x, 0)=\mathrm{P}(x)
$$

where

$$
\begin{aligned}
\mathrm{P}(x) & =1 \quad, & \text { if } x \leq 0 \\
& =1+x^{2}, & \text { if } 0<x \leq 1 \\
& =2 \quad, & \text { if } x>1
\end{aligned}
$$

Plot the solution, $u(x, t)$, as a function of x at $t=0,1$, and 2 .

Prob 2 (2 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, find the solution of the PDE,

$$
0.5 \frac{\partial u}{\partial t}+x\left(\frac{\partial u}{\partial x}+1\right)=0
$$

with the boundary condition,

$$
u(x, 0)=\mathrm{P}(x)
$$

where

$$
\mathrm{P}(x)=1 \quad, \text { if } x \leq 0
$$

$$
\left.=\mathrm{e}^{-x}, \text { if } x>0 \quad \text { (See Fig. } 1 \text { for a plot of } \mathrm{P}(\mathrm{x}) .\right)
$$

Using your solution, evaluate $u(x, t)$ at $(x=1, t=0.1)$ and $(x=-1 \quad t=0.2)$.

Fig. 1

Prob 3 (2 points)

Consider the following PDE for $u(x, t)$ defined on the infinite domain of $-\infty<x<\infty$ and $t \geq 0$,

$$
\frac{\partial u}{\partial t}=5 u+Q(t)
$$

with the boundary condition,

$$
u(x, 0)=\mathrm{P}(x)
$$

(a) Find the Green's function, $G\left(t, t^{\prime}\right)$, such that for any given $Q(t)$ and $\mathrm{P}(x)$ the solution of the system can be expressed as

$$
\begin{equation*}
u(x, t)=G(t, 0) P(x)+\int_{0}^{t} G\left(t, t^{\prime}\right) Q\left(t^{\prime}\right) d t^{\prime} \tag{1}
\end{equation*}
$$

(b) Use the Green's function from (a) and Eq. (1) to construct the solution for the case with $\mathrm{P}(x)$ $=\exp \left(-x^{2}\right)$ and $\mathrm{Q}(t)=\exp (-3 t)$.

