MAE502 Spring 2014 Homework \#4A

Problem 1 (3.5 points)

For $u(x, t)$ defined on the domain of $0 \leq x \leq 1$ and $t \geq 0$, solve the Heat equation with an internal heat source/sink, $Q(x)$,

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+Q(x),
$$

with the boundary conditions,

$$
\text { (i) } u(0, t)=0 \text {, (ii) } u(1, t)=0 \text {, and (iii) } u(x, 0)=\mathrm{P}(x) \text {, }
$$

where

$$
\begin{aligned}
\mathrm{P}(x) & =0, & \text { if } 0 \leq x \leq 0.25 \\
& =4 x-1, & \text { if } 0.25<x \leq 0.5 \\
& =3-4 x, & \text { if } 0.5<x \leq 0.75 \\
& =0, & \text { if } 0.75<x \leq 1
\end{aligned}
$$

and

$$
\begin{array}{rlrl}
\mathrm{Q}(x) & =0, & \text { if } 0 \leq x \leq 0.5 \\
& =20-40 x, \text { if } 0.5<x \leq 0.75 \\
& =40 x-40, \text { if } 0.75<x \leq 1
\end{array}
$$

Plot the solution as a function of x at $t=0,0.01,0.05$, and 0.2 , along with the steady state $(u(x, t)$ as $t \rightarrow \infty)$. Collect all five curves in a single plot.

Problem 2 (1.5 point)

For $u(x, t)$ defined on the domain of $0 \leq x \leq 1$ and $t \geq 0$, find the analytic solution of the nonhomogeneous PDE,

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-5 \sin (t)+\cos (2 \pi x) \exp (-t),
$$

with the boundary conditions,
(i) $u(0, t)=u(1, t)$
(ii) $u_{x}(0, t)=u_{x}(1, t)$
(iii) $u(x, 0)=4+3 \sin (6 \pi x)$.

Using your solution, evaluate $u(x, t)$ at $x=0.8, t=0.05$.

