MAE/MSE502 Spring 2014 Homework \#5

Prob. 1 (2.5 points)

Consider the function (see sketch below) defined on the interval of $0 \leq x \leq 1$,

$$
\begin{aligned}
f(x) & =1, & 0 \leq x \leq 0.5 \\
& =1-x, & 0.5<x \leq 1
\end{aligned}
$$

(a) Work out the Fourier Sine series expansion,

$$
F_{S}(x) \approx \sum_{n=1}^{\infty} a_{n} \sin (n \pi x)
$$

where $F_{\mathrm{S}}(x)$ denotes the Fourier Sine series representation of $f(x)$. Plot the original $f(x)$ and its Fourier Sine series representation, $F_{\mathrm{S}}(x)$, truncated (inclusively) at $n=5,10$, and 30. Please collect all four curves in a single plot.
(b) What are the values of $F_{\mathrm{S}}(x)$ at $x=0.75$ for the three cases truncated at $n=5,10$, and 30 ? Compare them to the exact value, $f(0.75$), to determine the percentage error (using the exact value as denominator) for the three cases. Repeat the exercise for $x=0.51$ (a point close to the discontinuity). Discuss the results.
(c) Define $S(\mathrm{~N})$ as the value of $F_{\mathrm{S}}(0.5)$ calculated from the Fourier Sine series truncated at $n=$ N , plot $S(\mathrm{~N})$ as a function of N for the range of $1 \leq \mathrm{N} \leq 30$. What value does $S(\mathrm{~N})$ converge to at large N ?
(d) Repeat (a) but now work out the Fourier Cosine series expansion,

$$
F_{C}(x) \approx \sum_{n=0}^{\infty} a_{n} \cos (n \pi x)
$$

where $F_{\mathrm{C}}(x)$ denotes the Fourier Cosine series representation of $f(x)$. (Beware that the summation starts at $n=0$.) Plot the $F_{\mathrm{C}}(x)$ truncated (inclusively) at $n=5,10$, and 30, along with the original $f(x)$.

Prob. 2 (3.5 points)

For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE

$$
\frac{\partial u}{\partial t}=\frac{\partial^{3} u}{\partial x^{3}}+\frac{\partial^{4} u}{\partial x^{4}}
$$

with the boundary conditions (the first four simply indicate that the system is periodic in x),
(i) $u(0, t)=u(2 \pi, t)$
(ii) $u_{x}(0, t)=u_{x}(2 \pi, t)$
(iii) $u_{x x}(0, t)=u_{x x}(2 \pi, t)$
(iv) $u_{x x x}(0, t)=u_{x x x}(2 \pi, t)$
(v) $u(x, 0)=5+2 \cos (3 x)$.

Evaluate $u(x, t)$ at $x=1, t=0.01$.

Prob. 3 (1 point)

(a) Given the following function defined on the semi-infinite interval, $0 \leq x<\infty$,

$$
\begin{align*}
f(x) & =1, \text { if } 0 \leq x \leq 1, \tag{1}\\
& =0, \text { if } x>1,
\end{align*}
$$

determine the Fourier Sine transform of $f(x), F(\omega)$, that satisfies

$$
f(x)=\int_{0}^{\infty} F(\omega) \sin (\omega x) d \omega
$$

Plot $F(\omega)$ as a function of ω for the range $0 \leq \omega \leq 30$.
(b) If the $f(x)$ in Eq. (1) is instead defined on a finite interval, $0 \leq x \leq L$ (but otherwise retains its definition in Eq. (1), i.e., $f(x)=0$ if $1<x \leq L$), find the coefficients, a_{n}, for the Fourier Sine series of $f(x)$,

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Plot a_{n} as a function of n for the following cases: (i) For $L=2$, plot a_{n} over the range of $1 \leq n<60 / \pi$. (ii) For $L=5$, plot a_{n} for $1 \leq n<150 / \pi$. (iii) For $L=100$, plot a_{n} for $1 \leq n<3000 / \pi$. Compare these plots with the plot of $F(\omega)$ in (a). Discuss your results.
(Note: This homework illustrates the correspondence between Fourier series and Fourier integral. When making the plots, beware that the " n " in Part (b) is an integer while the " ω " in Part (a) can be any real number.)

