MAE/MSE502 Spring 2014 Homework \#6A

Prob 1 (3 points)

For $u(x, t)$ defined on the infinite domain, $-\infty<x<\infty$, and $t \geq 0$, use the Fourier transform method to solve the PDE

$$
\frac{\partial u}{\partial t}=\frac{\partial^{3} u}{\partial x^{3}}
$$

with the boundary conditions
(I) $u(x, t)$ and all of its partial derivatives in x vanish as $x \rightarrow \pm \infty$
(II) $u(x, 0)=\exp \left(-x^{2}\right)$.

Plot the solution, $u(x, t)$, as a function of t at $t=0,0.1$, and 0.3 . Collect all three curves in one plot. It is recommended that the plot be made to cover the interval of $-10 \leq x \leq 10$. For this problem, it is acceptable that your solution be expressed as an integral. The values of $u(x, t)$ that are needed to make the plot can be obtained by numerical integration.

Prob 2 (2 points)

For $u(x, t)$ defined on the infinite domain, $-\infty<x<\infty$, and $t \geq 0$, use the Fourier transform method to solve the PDE

$$
\frac{\partial u}{\partial t}=\frac{\partial u}{\partial x}-2 u
$$

with the boundary conditions
(I) $u(x, t)$ and all of its partial derivatives in x vanish as $x \rightarrow \pm \infty$
(II) $u(x, 0)=\exp \left(-x^{2}\right)$.

For this problem, the goal is to obtain a closed-form analytic solution. All integrals that appear in the intermediate steps should be evaluated analytically.

Hint: For both problems, you may find the following formula useful:

$$
\int_{0}^{\infty} \mathrm{e}^{-x^{2}} \cos (2 b x) d x=\frac{\sqrt{\pi}}{2} \mathrm{e}^{-b^{2}}
$$

More precisely, it is useful for carrying out the Fourier transform in Prob 1, and both the F.T. and inverse F. T. in Prob 2.

