Prob 1 (3 points)
For $u(x, t)$ defined on the infinite domain, $-\infty<x<\infty$, and $t \geq 0$, consider the PDE,

$$
\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}+u \frac{\partial u}{\partial x}=0.5
$$

with the boundary condition,

$$
u(x, 0)=\mathrm{P}(x)
$$

where

$$
\begin{aligned}
\mathrm{P}(x) & =1 & & , \text { if } x<0 \\
& =1-x & , & \text { if } 0 \leq x \leq 1 \\
& =0 & & \text { if } x>1
\end{aligned}
$$

(a) Find the analytic solution that is valid for $t<1$. Plot the solution as a function of x at $t=0$ (initial state), 0.5 , and 0.8 .
(b) Evaluate $u(x, t)$ at $(x=0.9, t=0.4)$ and $(x=1.6, t=0.5)$.
(c) Plot selected characteristics of this problem in the $x-t$ plane and use them to discuss the behavior of the solution. In particular, discuss the behavior of the solution as $t \rightarrow 1$.

Prob 2 (2 points)
For $u(x, t)$ defined on the infinite interval, $-\infty<x<\infty$, and for $t \geq 0$, solve the PDE,

$$
\frac{\partial u}{\partial t}-t \frac{\partial u}{\partial x}-x=0
$$

with the boundary condition,

$$
u(x, 0)=\mathrm{P}(x)
$$

where

$$
\begin{aligned}
\mathrm{P}(x) & =0 & & \text {, if } x<0 \\
& =x^{2} & & \text { if } 0 \leq x \leq 1 \\
& =1 & & \text {, if } x>1
\end{aligned}
$$

Plot the solution as a function of x at $t=0$ (initial state), 0.5 , and 1 .
Prob 3 (2 points)
For $u(x, t)$ defined on the infinite interval, $-\infty<x<\infty$, and for $t \geq 0$, find the solution of the PDE,

$$
0.5 \frac{\partial u}{\partial t}+x\left(\frac{\partial u}{\partial x}+1\right)=0
$$

with the boundary condition,

$$
u(x, 0)=\mathrm{P}(x)
$$

where

$$
\begin{aligned}
\mathrm{P}(x) & =1 & , \text { if } x \leq 0 \\
& =\mathrm{e}^{-x} & , \text { if } x>0
\end{aligned}
$$

Plot the solution as a function of x at $t=0$ (initial state), 0.1 , and 0.3 .

